Cargando…

Cell specific variation in viability in suspension in in vitro Poiseuille flow conditions

The influence of Poiseuille flow on cell viability has applications in the areas of cancer metastasis, lab-on-a-chip devices and flow cytometry. Indeed, retaining cell viability is important in the emerging field of adoptive cell therapy, as cells need to be returned to patients’ bodies, while the v...

Descripción completa

Detalles Bibliográficos
Autores principales: Connolly, Sinead, Newport, David, McGourty, Kieran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263586/
https://www.ncbi.nlm.nih.gov/pubmed/34234155
http://dx.doi.org/10.1038/s41598-021-91865-1
Descripción
Sumario:The influence of Poiseuille flow on cell viability has applications in the areas of cancer metastasis, lab-on-a-chip devices and flow cytometry. Indeed, retaining cell viability is important in the emerging field of adoptive cell therapy, as cells need to be returned to patients’ bodies, while the viability of other cells, which are perhaps less accustomed to suspension in a fluidic environment, is important to retain in flow cytometers and other such devices. Despite this, it is unclear how Poiseuille flow affects cell viability. Following on from previous studies which investigated the viability and inertial positions of circulating breast cancer cells in identical flow conditions, this study investigated the influence that varying flow rate, and the corresponding Reynolds number has on the viability of a range of different circulating cells in laminar pipe flow including primary T-cells, primary fibroblasts and neuroblastoma cells. It was found that Reynolds numbers as high as 9.13 had no effect on T-cells while the viabilities of neuroblastoma cells and intestinal fibroblasts were significantly reduced in comparison. This indicates that in vitro flow devices need to be tailored to cell-specific flow regimes.