Cargando…
Oropharyngeal cancer patient stratification using random forest based-learning over high-dimensional radiomic features
To improve risk prediction for oropharyngeal cancer (OPC) patients using cluster analysis on the radiomic features extracted from pre-treatment Computed Tomography (CT) scans. 553 OPC Patients randomly split into training (80%) and validation (20%), were classified into 2 or 3 risk groups by applyin...
Autores principales: | Patel, Harsh, Vock, David M., Marai, G. Elisabeta, Fuller, Clifton D., Mohamed, Abdallah S. R., Canahuate, Guadalupe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263609/ https://www.ncbi.nlm.nih.gov/pubmed/34234160 http://dx.doi.org/10.1038/s41598-021-92072-8 |
Ejemplares similares
-
Clustering of Largely Right-Censored Oropharyngeal Head and Neck Cancer Patients for Discriminative Groupings to Improve Outcome Prediction
por: Tosado, Joel, et al.
Publicado: (2020) -
Multi-organ spatial stratification of 3-D dose distributions improves risk prediction of long-term self-reported severe symptoms in oropharyngeal cancer patients receiving radiotherapy: development of a pre-treatment decision support tool
por: Wentzel, Andrew, et al.
Publicado: (2023) -
Optimal Treatment Selection in Sequential Systemic and Locoregional Therapy of Oropharyngeal Squamous Carcinomas: Deep Q-Learning With a Patient-Physician Digital Twin Dyad
por: Tardini, Elisa, et al.
Publicado: (2022) -
Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer
por: Liu, Rongjie, et al.
Publicado: (2019) -
Distributed query-aware quantization for high-dimensional similarity searches
por: Guzun, Gheorghi, et al.
Publicado: (2018)