Cargando…
An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism
Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying pa...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263618/ https://www.ncbi.nlm.nih.gov/pubmed/34234248 http://dx.doi.org/10.1038/s41598-021-93390-7 |
_version_ | 1783719423230607360 |
---|---|
author | Razzaq, Misbah Iglesias, Maria Jesus Ibrahim-Kosta, Manal Goumidi, Louisa Soukarieh, Omar Proust, Carole Roux, Maguelonne Suchon, Pierre Boland, Anne Daiain, Delphine Olaso, Robert Havervall, Sebastian Thalin, Charlotte Butler, Lynn Deleuze, Jean-François Odeberg, Jacob Morange, Pierre-Emmanuel Trégouët, David-Alexandre |
author_facet | Razzaq, Misbah Iglesias, Maria Jesus Ibrahim-Kosta, Manal Goumidi, Louisa Soukarieh, Omar Proust, Carole Roux, Maguelonne Suchon, Pierre Boland, Anne Daiain, Delphine Olaso, Robert Havervall, Sebastian Thalin, Charlotte Butler, Lynn Deleuze, Jean-François Odeberg, Jacob Morange, Pierre-Emmanuel Trégouët, David-Alexandre |
author_sort | Razzaq, Misbah |
collection | PubMed |
description | Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10(–7)) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated. |
format | Online Article Text |
id | pubmed-8263618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-82636182021-07-09 An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism Razzaq, Misbah Iglesias, Maria Jesus Ibrahim-Kosta, Manal Goumidi, Louisa Soukarieh, Omar Proust, Carole Roux, Maguelonne Suchon, Pierre Boland, Anne Daiain, Delphine Olaso, Robert Havervall, Sebastian Thalin, Charlotte Butler, Lynn Deleuze, Jean-François Odeberg, Jacob Morange, Pierre-Emmanuel Trégouët, David-Alexandre Sci Rep Article Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10(–7)) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated. Nature Publishing Group UK 2021-07-07 /pmc/articles/PMC8263618/ /pubmed/34234248 http://dx.doi.org/10.1038/s41598-021-93390-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Razzaq, Misbah Iglesias, Maria Jesus Ibrahim-Kosta, Manal Goumidi, Louisa Soukarieh, Omar Proust, Carole Roux, Maguelonne Suchon, Pierre Boland, Anne Daiain, Delphine Olaso, Robert Havervall, Sebastian Thalin, Charlotte Butler, Lynn Deleuze, Jean-François Odeberg, Jacob Morange, Pierre-Emmanuel Trégouët, David-Alexandre An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism |
title | An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism |
title_full | An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism |
title_fullStr | An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism |
title_full_unstemmed | An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism |
title_short | An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism |
title_sort | artificial neural network approach integrating plasma proteomics and genetic data identifies plxna4 as a new susceptibility locus for pulmonary embolism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263618/ https://www.ncbi.nlm.nih.gov/pubmed/34234248 http://dx.doi.org/10.1038/s41598-021-93390-7 |
work_keys_str_mv | AT razzaqmisbah anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT iglesiasmariajesus anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT ibrahimkostamanal anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT goumidilouisa anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT soukariehomar anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT proustcarole anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT rouxmaguelonne anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT suchonpierre anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT bolandanne anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT daiaindelphine anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT olasorobert anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT havervallsebastian anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT thalincharlotte anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT butlerlynn anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT deleuzejeanfrancois anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT odebergjacob anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT morangepierreemmanuel anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT tregouetdavidalexandre anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT razzaqmisbah artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT iglesiasmariajesus artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT ibrahimkostamanal artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT goumidilouisa artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT soukariehomar artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT proustcarole artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT rouxmaguelonne artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT suchonpierre artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT bolandanne artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT daiaindelphine artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT olasorobert artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT havervallsebastian artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT thalincharlotte artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT butlerlynn artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT deleuzejeanfrancois artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT odebergjacob artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT morangepierreemmanuel artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism AT tregouetdavidalexandre artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism |