Cargando…
Telerobotic Operation of Intensive Care Unit Ventilators
Since the first reports of a novel coronavirus (SARS-CoV-2) in December 2019, over 33 million people have been infected worldwide and approximately 1 million people worldwide have died from the disease caused by this virus, COVID-19. In the United States alone, there have been approximately 7 millio...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264200/ https://www.ncbi.nlm.nih.gov/pubmed/34250025 http://dx.doi.org/10.3389/frobt.2021.612964 |
_version_ | 1783719500047187968 |
---|---|
author | Vagvolgyi, Balazs P. Khrenov, Mikhail Cope, Jonathan Deguet, Anton Kazanzides, Peter Manzoor, Sajid Taylor, Russell H. Krieger, Axel |
author_facet | Vagvolgyi, Balazs P. Khrenov, Mikhail Cope, Jonathan Deguet, Anton Kazanzides, Peter Manzoor, Sajid Taylor, Russell H. Krieger, Axel |
author_sort | Vagvolgyi, Balazs P. |
collection | PubMed |
description | Since the first reports of a novel coronavirus (SARS-CoV-2) in December 2019, over 33 million people have been infected worldwide and approximately 1 million people worldwide have died from the disease caused by this virus, COVID-19. In the United States alone, there have been approximately 7 million cases and over 200,000 deaths. This outbreak has placed an enormous strain on healthcare systems and workers. Severe cases require hospital care, and 8.5% of patients require mechanical ventilation in an intensive care unit (ICU). One major challenge is the necessity for clinical care personnel to don and doff cumbersome personal protective equipment (PPE) in order to enter an ICU unit to make simple adjustments to ventilator settings. Although future ventilators and other ICU equipment may be controllable remotely through computer networks, the enormous installed base of existing ventilators do not have this capability. This paper reports the development of a simple, low cost telerobotic system that permits adjustment of ventilator settings from outside the ICU. The system consists of a small Cartesian robot capable of operating a ventilator touch screen with camera vision control via a wirelessly connected tablet master device located outside the room. Engineering system tests demonstrated that the open-loop mechanical repeatability of the device was 7.5 mm, and that the average positioning error of the robotic finger under visual servoing control was 5.94 mm. Successful usability tests in a simulated ICU environment were carried out and are reported. In addition to enabling a significant reduction in PPE consumption, the prototype system has been shown in a preliminary evaluation to significantly reduce the total time required for a respiratory therapist to perform typical setting adjustments on a commercial ventilator, including donning and doffing PPE, from 271 to 109 s. |
format | Online Article Text |
id | pubmed-8264200 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82642002021-07-09 Telerobotic Operation of Intensive Care Unit Ventilators Vagvolgyi, Balazs P. Khrenov, Mikhail Cope, Jonathan Deguet, Anton Kazanzides, Peter Manzoor, Sajid Taylor, Russell H. Krieger, Axel Front Robot AI Robotics and AI Since the first reports of a novel coronavirus (SARS-CoV-2) in December 2019, over 33 million people have been infected worldwide and approximately 1 million people worldwide have died from the disease caused by this virus, COVID-19. In the United States alone, there have been approximately 7 million cases and over 200,000 deaths. This outbreak has placed an enormous strain on healthcare systems and workers. Severe cases require hospital care, and 8.5% of patients require mechanical ventilation in an intensive care unit (ICU). One major challenge is the necessity for clinical care personnel to don and doff cumbersome personal protective equipment (PPE) in order to enter an ICU unit to make simple adjustments to ventilator settings. Although future ventilators and other ICU equipment may be controllable remotely through computer networks, the enormous installed base of existing ventilators do not have this capability. This paper reports the development of a simple, low cost telerobotic system that permits adjustment of ventilator settings from outside the ICU. The system consists of a small Cartesian robot capable of operating a ventilator touch screen with camera vision control via a wirelessly connected tablet master device located outside the room. Engineering system tests demonstrated that the open-loop mechanical repeatability of the device was 7.5 mm, and that the average positioning error of the robotic finger under visual servoing control was 5.94 mm. Successful usability tests in a simulated ICU environment were carried out and are reported. In addition to enabling a significant reduction in PPE consumption, the prototype system has been shown in a preliminary evaluation to significantly reduce the total time required for a respiratory therapist to perform typical setting adjustments on a commercial ventilator, including donning and doffing PPE, from 271 to 109 s. Frontiers Media S.A. 2021-06-24 /pmc/articles/PMC8264200/ /pubmed/34250025 http://dx.doi.org/10.3389/frobt.2021.612964 Text en Copyright © 2021 Vagvolgyi, Khrenov, Cope, Deguet, Kazanzides, Manzoor, Taylor and Krieger. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Robotics and AI Vagvolgyi, Balazs P. Khrenov, Mikhail Cope, Jonathan Deguet, Anton Kazanzides, Peter Manzoor, Sajid Taylor, Russell H. Krieger, Axel Telerobotic Operation of Intensive Care Unit Ventilators |
title | Telerobotic Operation of Intensive Care Unit Ventilators |
title_full | Telerobotic Operation of Intensive Care Unit Ventilators |
title_fullStr | Telerobotic Operation of Intensive Care Unit Ventilators |
title_full_unstemmed | Telerobotic Operation of Intensive Care Unit Ventilators |
title_short | Telerobotic Operation of Intensive Care Unit Ventilators |
title_sort | telerobotic operation of intensive care unit ventilators |
topic | Robotics and AI |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264200/ https://www.ncbi.nlm.nih.gov/pubmed/34250025 http://dx.doi.org/10.3389/frobt.2021.612964 |
work_keys_str_mv | AT vagvolgyibalazsp teleroboticoperationofintensivecareunitventilators AT khrenovmikhail teleroboticoperationofintensivecareunitventilators AT copejonathan teleroboticoperationofintensivecareunitventilators AT deguetanton teleroboticoperationofintensivecareunitventilators AT kazanzidespeter teleroboticoperationofintensivecareunitventilators AT manzoorsajid teleroboticoperationofintensivecareunitventilators AT taylorrussellh teleroboticoperationofintensivecareunitventilators AT kriegeraxel teleroboticoperationofintensivecareunitventilators |