Cargando…

Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway

Ferroptosis is primarily triggered by a failure of the glutathione (GSH)-glutathione peroxidase 4 (GPX4) reductive system and associated overwhelming lipid peroxidation, in which enzymes regulating polyunsaturated fatty acid (PUFA) metabolism, and in particular acyl-CoA synthetase long chain family...

Descripción completa

Detalles Bibliográficos
Autores principales: Shui, Sufang, Zhao, Zenglu, Wang, Hao, Conrad, Marcus, Liu, Guoquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264218/
https://www.ncbi.nlm.nih.gov/pubmed/34229160
http://dx.doi.org/10.1016/j.redox.2021.102056
Descripción
Sumario:Ferroptosis is primarily triggered by a failure of the glutathione (GSH)-glutathione peroxidase 4 (GPX4) reductive system and associated overwhelming lipid peroxidation, in which enzymes regulating polyunsaturated fatty acid (PUFA) metabolism, and in particular acyl-CoA synthetase long chain family member 4 (ACSL4), are central. Here, we found that exogenous oxygen radicals generated by photodynamic therapy (PDT) can directly peroxidize PUFAs and initiate lipid autoxidation, coinciding with cellular GSH depletion. Different from canonical ferroptosis induced by RSL3 or erastin, PDT-initiated lipid peroxidation and ferroptotis-like cell death is independent of lipoxygenase (ALOXs) and ACSL4. Especially, this form of cell death modality can be triggered in malignant cells insensitive to or acquired resistance to canonical ferroptosis inducers. We also observed a distinct iron metabolism pathway in this PDT-triggered cell death modality, in which cytosolic labile iron is decreased probably due to its relocation to mitochondria. Inhibition of the mitochondrial Ca(2+) and Fe(2+) uniporter (MCU) effectively prevented PDT-triggered lipid peroxidation and subsequent cell death. Therefore, we tentatively term this distinct ferroptosis-like cell death as liperoptosis. Moreover, using the clinically approved photosensitizer Verteporfin, PDT inhibited tumor growth through inducing prevailing ferroptosis-like cell death in a mouse xenograft model. With its site-specific advantages, these findings highlight the value of using PDT to trigger lipid peroxidation and ferroptosis-like cell death in vivo, and will benefit exploring the exact molecular mechanism of immunological effects of PDT in cancer treatment.