Cargando…

Evaluation of Explicit Motor Timing Ability in Young Tennis Players

A crucial ability for athletes playing sports that involve coincidence timing actions is the motor timing ability. The efficiency of perceptual and motor processes underlying the motor timing ability has been related to the motor experience gained in interceptive sports, such as tennis. In the prese...

Descripción completa

Detalles Bibliográficos
Autores principales: Bisio, Ambra, Faelli, Emanuela, Pelosin, Elisa, Carrara, Gloria, Ferrando, Vittoria, Avanzino, Laura, Ruggeri, Piero
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264372/
https://www.ncbi.nlm.nih.gov/pubmed/34248791
http://dx.doi.org/10.3389/fpsyg.2021.687302
Descripción
Sumario:A crucial ability for athletes playing sports that involve coincidence timing actions is the motor timing ability. The efficiency of perceptual and motor processes underlying the motor timing ability has been related to the motor experience gained in interceptive sports, such as tennis. In the present study, the motor timing ability in young tennis players (TP) and age-matched control participants (CTRL) was compared by means of a synchronization paradigm. Participants were asked to perform finger-opposition movements in synch to a metronome beating 0.5 and 2 Hz in (1) a bimanual coordination test, which compared the performance of the dominant hand with that of the contralateral hand, and (2) a movement lateralization test, which compared the motor performance of the dominant hand during single-hand and bimanual tasks (BTs). The motor performance was evaluated through movement strategy [defined by touch duration (TD), inter-tapping interval (ITI), and movement frequency] and movement accuracy (temporal accuracy defined by the synchronization error and spatial accuracy defined by the percentage of correct touches—%CORR_SEQ). Results showed that motor expertise significantly influences movement strategy in the bimanual coordination test; TD of TP was significantly higher than those of CTRL, specifically at 0.5 Hz. Furthermore, overall ITI values of TP were lower than those of CTRL. Lastly, in the movement lateralization test, the %CORR_SEQ executed with the right dominant hand by TP in the BT was significantly higher than those of CTRL. A discussion about the role of motor expertise in the timing ability and the related neurophysiological adaptations is provided.