Cargando…
Bayesian Generalized Linear Model for Simulating Bacterial Inactivation/Growth Considering Variability and Uncertainty
Conventional regression analysis using the least-squares method has been applied to describe bacterial behavior logarithmically. However, only the normal distribution is used as the error distribution in the least-squares method, and the variability and uncertainty related to bacterial behavior are...
Autores principales: | Hiura, Satoko, Abe, Hiroki, Koyama, Kento, Koseki, Shige |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264593/ https://www.ncbi.nlm.nih.gov/pubmed/34248886 http://dx.doi.org/10.3389/fmicb.2021.674364 |
Ejemplares similares
-
Describing Uncertainty in Salmonella Thermal Inactivation Using Bayesian Statistical Modeling
por: Koyama, Kento, et al.
Publicado: (2019) -
Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database
por: Hiura, Satoko, et al.
Publicado: (2021) -
Describing the Individual Spore Variability and the Parameter Uncertainty in Bacterial Survival Kinetics Model by Using Second-Order Monte Carlo Simulation
por: Abe, Hiroki, et al.
Publicado: (2020) -
Predicting sensory evaluation of spinach freshness using machine learning model and digital images
por: Koyama, Kento, et al.
Publicado: (2021) -
Bayesian tsunami fragility modeling considering input data uncertainty
por: De Risi, Raffaele, et al.
Publicado: (2016)