Cargando…
Assessing the effectiveness of ground truth data to capture landscape variability from an agricultural region using Gaussian simulation and geostatistical techniques
Predictive modeling with remotely sensed data requires an accurate representation of spatial variability by ground truth data. In this study, we assessed the reliability of the size and location of ground truth data in capturing the landscape spatial variability embedded in the Airborne Visible Infr...
Autores principales: | Salas, Eric Ariel L., Subburayalu, Sakthi Kumaran, Slater, Brian, Dave, Rucha, Parekh, Parshva, Zhao, Kaiguang, Bhattacharya, Bimal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264615/ https://www.ncbi.nlm.nih.gov/pubmed/34278031 http://dx.doi.org/10.1016/j.heliyon.2021.e07439 |
Ejemplares similares
-
Modified shape index for object-based random forest image classification of agricultural systems using airborne hyperspectral datasets
por: Salas, Eric Ariel L., et al.
Publicado: (2019) -
Correction: Modified shape index for object-based random forest image classification of agricultural systems using airborne hyperspectral datasets
por: Salas, Eric Ariel L., et al.
Publicado: (2019) -
Ground Truth
por: Garrity, George M.
Publicado: (2009) -
Using Geostatistical Gaussian Simulation for Designing and Interpreting Soil Surface Magnetic Susceptibility Measurements
por: Fabijańczyk, Piotr, et al.
Publicado: (2019) -
Tryggo: Old norse for truth: The real truth about ground truth: New insights into the challenges of generating ground truth maps for WSI CAD algorithm evaluation
por: Hipp, Jason D., et al.
Publicado: (2012)