Cargando…
Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Identify and Estimate Survival in a Longitudinal Cohort of Patients With Lung Cancer
IMPORTANCE: Electronic health records (EHRs) provide a low-cost means of accessing detailed longitudinal clinical data for large populations. A lung cancer cohort assembled from EHR data would be a powerful platform for clinical outcome studies. OBJECTIVE: To investigate whether a clinical cohort as...
Autores principales: | Yuan, Qianyu, Cai, Tianrun, Hong, Chuan, Du, Mulong, Johnson, Bruce E., Lanuti, Michael, Cai, Tianxi, Christiani, David C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264641/ https://www.ncbi.nlm.nih.gov/pubmed/34232304 http://dx.doi.org/10.1001/jamanetworkopen.2021.14723 |
Ejemplares similares
-
Temporal Trends in Clinical Evidence of 5-Year Survival Within Electronic Health Records Among Patients With Early-Stage Colon Cancer Managed With Laparoscopy-Assisted Colectomy vs Open Colectomy
por: Hou, Jue, et al.
Publicado: (2022) -
Comparison of Dimethyl Fumarate vs Fingolimod and Rituximab vs Natalizumab for Treatment of Multiple Sclerosis
por: Hou, Jue, et al.
Publicado: (2021) -
Leveraging electronic health records data to predict multiple sclerosis disease activity
por: Ahuja, Yuri, et al.
Publicado: (2021) -
Improving the Efficiency of Clinical Trial Recruitment Using an Ensemble Machine Learning to Assist With Eligibility Screening
por: Cai, Tianrun, et al.
Publicado: (2021) -
Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform
por: Ren, Yuanfang, et al.
Publicado: (2022)