Cargando…
Explaining multivariate molecular diagnostic tests via Shapley values
BACKGROUND: Machine learning (ML) can be an effective tool to extract information from attribute-rich molecular datasets for the generation of molecular diagnostic tests. However, the way in which the resulting scores or classifications are produced from the input data may not be transparent. Algori...
Autores principales: | Roder, Joanna, Maguire, Laura, Georgantas, Robert, Roder, Heinrich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265031/ https://www.ncbi.nlm.nih.gov/pubmed/34238309 http://dx.doi.org/10.1186/s12911-021-01569-9 |
Ejemplares similares
-
Semi-Quantitative MALDI Measurements of Blood-Based Samples for Molecular Diagnostics
por: Koc, Matthew A., et al.
Publicado: (2022) -
Explaining a series of models by propagating Shapley values
por: Chen, Hugh, et al.
Publicado: (2022) -
The Shapley value: essays in honor of Lloyd S. Shapley
por: Roth, Alvin E
Publicado: (1988) -
Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values
por: Lamens, Alec, et al.
Publicado: (2023) -
Predicting prognosis in COVID-19 patients using machine learning and readily available clinical data
por: Campbell, Thomas W., et al.
Publicado: (2021)