Cargando…
A comprehensive and universal approach for embryo testing in patients with different genetic disorders
BACKGROUND: In vitro fertilization (IVF) with preimplantation genetic testing (PGT) has markedly improved clinical pregnancy outcomes for carriers of gene mutations or chromosomal structural rearrangements by the selection of embryos free of disease‐causing genes and chromosome abnormalities. Howeve...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265165/ https://www.ncbi.nlm.nih.gov/pubmed/34323405 http://dx.doi.org/10.1002/ctm2.490 |
_version_ | 1783719714723201024 |
---|---|
author | Zhang, Shuo Lei, Caixia Wu, Junping Xiao, Min Zhou, Jing Zhu, Saijuan Fu, Jing Lu, Daru Sun, Xiaoxi Xu, Congjian |
author_facet | Zhang, Shuo Lei, Caixia Wu, Junping Xiao, Min Zhou, Jing Zhu, Saijuan Fu, Jing Lu, Daru Sun, Xiaoxi Xu, Congjian |
author_sort | Zhang, Shuo |
collection | PubMed |
description | BACKGROUND: In vitro fertilization (IVF) with preimplantation genetic testing (PGT) has markedly improved clinical pregnancy outcomes for carriers of gene mutations or chromosomal structural rearrangements by the selection of embryos free of disease‐causing genes and chromosome abnormalities. However, for detecting whole or segmental chromosome aneuploidies, gene variants or balanced chromosome rearrangements in the same embryo require separate procedures, and none of the existing detection platforms is universal for all patients with different genetic disorders. METHODS: Here, we report a cost‐effective, family‐based haplotype phasing approach that can simultaneously evaluate multiple genetic variants, including monogenic disorders, aneuploidy, and balanced chromosome rearrangements in the same embryo with a single test. A total of 12 monogenic diseases carrier couples and either of them carried chromosomal rearrangements were enrolled simultaneously in this present study. Genome‐wide genotyping was performed with single‐nucleotide polymorphism (SNP)‐array, and aneuploidies were analyzed through SNP allele frequency and Log R ratio. Parental haplotypes were phased by an available genotype from a close relative, and the embryonic genome‐wide haplotypes were determined through family haplotype linkage analysis (FHLA). Disease‐causing genes and chromosomal rearrangements were detected by haplotypes located within the 2 Mb region covering the targeted genes or breakpoint regions. RESULTS: Twelve blastocysts were thawed, and then transferred into the uterus of female patients. Nine pregnancies had reached the second trimester and five healthy babies have been born. Fetus validation results, performed with the amniotic fluid or umbilical cord blood samples, were consistent with those at the blastocyst stage diagnosed by PGT. CONCLUSIONS: We demonstrate that SNP‐based FHLA enables the accurate genetic detection of a wide spectrum of monogenic diseases and chromosome abnormalities in embryos, preventing the transfer of parental genetic abnormalities to the fetus. This method can be implemented as a universal platform for embryo testing in patients with different genetic disorders. |
format | Online Article Text |
id | pubmed-8265165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82651652021-07-13 A comprehensive and universal approach for embryo testing in patients with different genetic disorders Zhang, Shuo Lei, Caixia Wu, Junping Xiao, Min Zhou, Jing Zhu, Saijuan Fu, Jing Lu, Daru Sun, Xiaoxi Xu, Congjian Clin Transl Med Research Articles BACKGROUND: In vitro fertilization (IVF) with preimplantation genetic testing (PGT) has markedly improved clinical pregnancy outcomes for carriers of gene mutations or chromosomal structural rearrangements by the selection of embryos free of disease‐causing genes and chromosome abnormalities. However, for detecting whole or segmental chromosome aneuploidies, gene variants or balanced chromosome rearrangements in the same embryo require separate procedures, and none of the existing detection platforms is universal for all patients with different genetic disorders. METHODS: Here, we report a cost‐effective, family‐based haplotype phasing approach that can simultaneously evaluate multiple genetic variants, including monogenic disorders, aneuploidy, and balanced chromosome rearrangements in the same embryo with a single test. A total of 12 monogenic diseases carrier couples and either of them carried chromosomal rearrangements were enrolled simultaneously in this present study. Genome‐wide genotyping was performed with single‐nucleotide polymorphism (SNP)‐array, and aneuploidies were analyzed through SNP allele frequency and Log R ratio. Parental haplotypes were phased by an available genotype from a close relative, and the embryonic genome‐wide haplotypes were determined through family haplotype linkage analysis (FHLA). Disease‐causing genes and chromosomal rearrangements were detected by haplotypes located within the 2 Mb region covering the targeted genes or breakpoint regions. RESULTS: Twelve blastocysts were thawed, and then transferred into the uterus of female patients. Nine pregnancies had reached the second trimester and five healthy babies have been born. Fetus validation results, performed with the amniotic fluid or umbilical cord blood samples, were consistent with those at the blastocyst stage diagnosed by PGT. CONCLUSIONS: We demonstrate that SNP‐based FHLA enables the accurate genetic detection of a wide spectrum of monogenic diseases and chromosome abnormalities in embryos, preventing the transfer of parental genetic abnormalities to the fetus. This method can be implemented as a universal platform for embryo testing in patients with different genetic disorders. John Wiley and Sons Inc. 2021-07-08 /pmc/articles/PMC8265165/ /pubmed/34323405 http://dx.doi.org/10.1002/ctm2.490 Text en © 2021 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Zhang, Shuo Lei, Caixia Wu, Junping Xiao, Min Zhou, Jing Zhu, Saijuan Fu, Jing Lu, Daru Sun, Xiaoxi Xu, Congjian A comprehensive and universal approach for embryo testing in patients with different genetic disorders |
title | A comprehensive and universal approach for embryo testing in patients with different genetic disorders |
title_full | A comprehensive and universal approach for embryo testing in patients with different genetic disorders |
title_fullStr | A comprehensive and universal approach for embryo testing in patients with different genetic disorders |
title_full_unstemmed | A comprehensive and universal approach for embryo testing in patients with different genetic disorders |
title_short | A comprehensive and universal approach for embryo testing in patients with different genetic disorders |
title_sort | comprehensive and universal approach for embryo testing in patients with different genetic disorders |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265165/ https://www.ncbi.nlm.nih.gov/pubmed/34323405 http://dx.doi.org/10.1002/ctm2.490 |
work_keys_str_mv | AT zhangshuo acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT leicaixia acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT wujunping acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT xiaomin acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT zhoujing acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT zhusaijuan acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT fujing acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT ludaru acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT sunxiaoxi acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT xucongjian acomprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT zhangshuo comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT leicaixia comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT wujunping comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT xiaomin comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT zhoujing comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT zhusaijuan comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT fujing comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT ludaru comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT sunxiaoxi comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders AT xucongjian comprehensiveanduniversalapproachforembryotestinginpatientswithdifferentgeneticdisorders |