Cargando…
DarkASDNet: Classification of ASD on Functional MRI Using Deep Neural Network
Non-invasive whole-brain scans aid the diagnosis of neuropsychiatric disorder diseases such as autism, dementia, and brain cancer. The assessable analysis for autism spectrum disorders (ASD) is rationally challenging due to the limitations of publicly available datasets. For diagnostic or prognostic...
Autores principales: | Ahammed, Md Shale, Niu, Sijie, Ahmed, Md Rishad, Dong, Jiwen, Gao, Xizhan, Chen, Yuehui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265393/ https://www.ncbi.nlm.nih.gov/pubmed/34248531 http://dx.doi.org/10.3389/fninf.2021.635657 |
Ejemplares similares
-
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
por: Almuqhim, Fahad, et al.
Publicado: (2021) -
Fixed/Predefined-time synchronization of memristor-based complex-valued BAM neural networks for image protection
por: Liu, Aidi, et al.
Publicado: (2022) -
Detection of ASD Children through Deep-Learning Application of fMRI
por: Feng, Min, et al.
Publicado: (2023) -
Classification of Geometric Forms in Mosaics Using Deep Neural Network
por: Ghosh, Mridul, et al.
Publicado: (2021) -
Dark Web Data Classification Using Neural Network
por: Rajawat, Anand Singh, et al.
Publicado: (2022)