Cargando…

Development of a psoriatic-like skin inflammation rat model using imiquimod as an inducing agent

OBJECTIVE: The present investigation was undertaken to develop a psoriatic-like skin inflammation rat model using imiquimod (IMQ) as an inducing agent. MATERIALS AND METHODS: The hairs of the back dorsal portion of the Wistar rats were removed and 80, 100, and 120 mg of IMQ cream (5% w/w) for 10 con...

Descripción completa

Detalles Bibliográficos
Autores principales: Parmar, Komal M., Jagtap, Chetan S., Katare, Nitin T., Dhobi, Mahaveer, Prasad, Satyendra K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265412/
https://www.ncbi.nlm.nih.gov/pubmed/34100396
http://dx.doi.org/10.4103/ijp.IJP_506_19
Descripción
Sumario:OBJECTIVE: The present investigation was undertaken to develop a psoriatic-like skin inflammation rat model using imiquimod (IMQ) as an inducing agent. MATERIALS AND METHODS: The hairs of the back dorsal portion of the Wistar rats were removed and 80, 100, and 120 mg of IMQ cream (5% w/w) for 10 consecutive days was applied to different groups of rats. Further, psoriasis area severity index was used for calculating the psoriatic score, which included scoring of erythema, scaling, and thickening. Various biochemical parameters, pro-inflammatory cytokines, vascular endothelial growth factor (VEGF), and histopathological examination were also performed. RESULTS: The results demonstrated signs of erythema, scaling, and thickening on group applied with 120 mg and 100 mg of IMQ along with ear thickening. Biochemical evaluation revealed a significant increase in the granulation tissue weight followed by significant decrease in the levels of collagen and hexosamine. The antioxidant parameters superoxide dismutase and catalase were found to decline, while nitric oxide and lipid peroxidation were significantly elevated in skin lesions, also supported by increased pro-inflammatory cytokines expression, i.e., interleukin (IL)-1 β, IL-6, IL-17, tumor necrosis factor-α, and VEGF. Histopathological studies revealed a disturbed natural structure along with increased epidermal proliferation, abnormal differentiation with increased number of keratinocytes in the psoriatic skin tissue. CONCLUSION: From the overall study, we have successfully developed a psoriatic-like skin inflammation rat model for the first time on Wistar strain using IMQ as an inducing agent.