Cargando…
Brain Regional Differences in Hexanucleotide Repeat Length in X-Linked Dystonia-Parkinsonism Using Nanopore Sequencing
OBJECTIVE: Our study investigated the presence of regional differences in hexanucleotide repeat number in postmortem brain tissues of 2 patients with X-linked dystonia-parkinsonism (XDP), a combined dystonia-parkinsonism syndrome modified by a (CCCTCT)(n) repeat within the causal SINE-VNTR-Alu retro...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265576/ https://www.ncbi.nlm.nih.gov/pubmed/34250228 http://dx.doi.org/10.1212/NXG.0000000000000608 |
Sumario: | OBJECTIVE: Our study investigated the presence of regional differences in hexanucleotide repeat number in postmortem brain tissues of 2 patients with X-linked dystonia-parkinsonism (XDP), a combined dystonia-parkinsonism syndrome modified by a (CCCTCT)(n) repeat within the causal SINE-VNTR-Alu retrotransposon insertion in the TAF1 gene. METHODS: Genomic DNA was extracted from blood and postmortem brain samples, including the basal ganglia and cortex from both patients and from the cerebellum, midbrain, and pituitary gland from 1 patient. Repeat sizing was performed using fragment analysis, small-pool PCR-based Southern blotting, and Oxford nanopore sequencing. RESULTS: The basal ganglia (p < 0.001) and cerebellum (p < 0.001) showed higher median repeat numbers and higher degrees of repeat instability compared with blood. CONCLUSIONS: Somatic repeat instability may predominate in brain regions selectively affected in XDP, thereby hinting at its potential role in disease manifestation and modification. |
---|