Cargando…

Exponentially Increasing Trend of Infected Patients with COVID-19 in Iran: A Comparison of Neural Network and ARIMA Forecasting Models

BACKGROUND: The outbreak of COVID-19 is rapidly spreading around the world and became a pandemic disease. For help to better planning of interventions, this study was conducted to forecast the number of daily new infected cases with COVID-19 for next thirty days in Iran. METHODS: The information of...

Descripción completa

Detalles Bibliográficos
Autores principales: MOFTAKHAR, Leila, SEIF, Mozhgan, SAFE, Marziyeh Sadat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tehran University of Medical Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266002/
https://www.ncbi.nlm.nih.gov/pubmed/34268211
http://dx.doi.org/10.18502/ijph.v49iS1.3675
Descripción
Sumario:BACKGROUND: The outbreak of COVID-19 is rapidly spreading around the world and became a pandemic disease. For help to better planning of interventions, this study was conducted to forecast the number of daily new infected cases with COVID-19 for next thirty days in Iran. METHODS: The information of observed Iranian new cases from 19th Feb to 30th Mar 2020 was used to predict the number of patients until 29(th) Apr. Artificial Neural Networks (ANN) and Auto-Regressive Integrated Moving Average (ARIMA) models were applied for prediction. The data was prepared from daily reports of Iran Ministry of Health and open datasets provided by the JOHN Hopkins. To compare models, dataset was separated into train and test sets. Mean Squared Error (MSE) and Mean Absolute Error (MAE) was the comparison criteria. RESULTS: Both algorithms forecasted an exponential increase in number of newly infected patients. If the spreading pattern continues the same as before, the number of daily new cases would be 7872 and 9558 by 29(th) Apr, respectively by ANN and ARIMA. While Model comparison confirmed that ARIMA prediction was more accurate than ANN. CONCLUSION: COVID-19 is contagious disease, and has infected many people in Iran. Our results are an alarm for health policy planners and decision-makers, to make timely decisions, control the disease and provide the equipment needed.