Cargando…
SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data
The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downs...
Autores principales: | Qi, Jing, Zhou, Yang, Zhao, Zicen, Jin, Shuilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266063/ https://www.ncbi.nlm.nih.gov/pubmed/34138847 http://dx.doi.org/10.1371/journal.pcbi.1009118 |
Ejemplares similares
-
Correction: SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data
por: Qi, Jing, et al.
Publicado: (2022) -
scMTD: a statistical multidimensional imputation method for single-cell RNA-seq data leveraging transcriptome dynamic information
por: Qi, Jing, et al.
Publicado: (2022) -
Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts
por: Zhang, Lihua, et al.
Publicado: (2020) -
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data
por: Malec, Marcin, et al.
Publicado: (2022) -
DrImpute: imputing dropout events in single cell RNA sequencing data
por: Gong, Wuming, et al.
Publicado: (2018)