Cargando…
Multiple imputation with compatibility for high-dimensional data
Multiple Imputation (MI) is always challenging in high dimensional settings. The imputation model with some selected number of predictors can be incompatible with the analysis model leading to inconsistent and biased estimates. Although compatibility in such cases may not be achieved, but one can ob...
Autores principales: | Zahid, Faisal Maqbool, Faisal, Shahla, Heumann, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266107/ https://www.ncbi.nlm.nih.gov/pubmed/34237092 http://dx.doi.org/10.1371/journal.pone.0254112 |
Ejemplares similares
-
Multiple imputation and analysis for high‐dimensional incomplete proteomics data
por: Yin, Xiaoyan, et al.
Publicado: (2015) -
Gender based survival prediction models for heart failure patients: A case study in Pakistan
por: Zahid, Faisal Maqbool, et al.
Publicado: (2019) -
Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
por: Liao, Serena G, et al.
Publicado: (2014) -
Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data
por: Deng, Yi, et al.
Publicado: (2016) -
Substantive model compatible multilevel multiple imputation: A joint modeling approach
por: Quartagno, Matteo, et al.
Publicado: (2022)