Cargando…
A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing
RET receptor tyrosine kinase plays vital developmental and neuroprotective roles in metazoans. GDNF family ligands (GFLs) when bound to cognate GFRα co-receptors recognize and activate RET stimulating its cytoplasmic kinase function. The principles for RET ligand-co-receptor recognition are incomple...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266384/ https://www.ncbi.nlm.nih.gov/pubmed/33484636 http://dx.doi.org/10.1016/j.str.2020.12.012 |
_version_ | 1783719935725273088 |
---|---|
author | Adams, Sarah E. Purkiss, Andrew G. Knowles, Phillip P. Nans, Andrea Briggs, David C. Borg, Annabel Earl, Christopher P. Goodman, Kerry M. Nawrotek, Agata Borg, Aaron J. McIntosh, Pauline B. Houghton, Francesca M. Kjær, Svend McDonald, Neil Q. |
author_facet | Adams, Sarah E. Purkiss, Andrew G. Knowles, Phillip P. Nans, Andrea Briggs, David C. Borg, Annabel Earl, Christopher P. Goodman, Kerry M. Nawrotek, Agata Borg, Aaron J. McIntosh, Pauline B. Houghton, Francesca M. Kjær, Svend McDonald, Neil Q. |
author_sort | Adams, Sarah E. |
collection | PubMed |
description | RET receptor tyrosine kinase plays vital developmental and neuroprotective roles in metazoans. GDNF family ligands (GFLs) when bound to cognate GFRα co-receptors recognize and activate RET stimulating its cytoplasmic kinase function. The principles for RET ligand-co-receptor recognition are incompletely understood. Here, we report a crystal structure of the cadherin-like module (CLD1-4) from zebrafish RET revealing interdomain flexibility between CLD2 and CLD3. Comparison with a cryo-electron microscopy structure of a ligand-engaged zebrafish RET(ECD)-GDNF-GFRα1a complex indicates conformational changes within a clade-specific CLD3 loop adjacent to the co-receptor. Our observations indicate that RET is a molecular clamp with a flexible calcium-dependent arm that adapts to different GFRα co-receptors, while its rigid arm recognizes a GFL dimer to align both membrane-proximal cysteine-rich domains. We also visualize linear arrays of RET(ECD)-GDNF-GFRα1a suggesting that a conserved contact stabilizes higher-order species. Our study reveals that ligand-co-receptor recognition by RET involves both receptor plasticity and strict spacing of receptor dimers by GFL ligands. |
format | Online Article Text |
id | pubmed-8266384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-82663842021-07-16 A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing Adams, Sarah E. Purkiss, Andrew G. Knowles, Phillip P. Nans, Andrea Briggs, David C. Borg, Annabel Earl, Christopher P. Goodman, Kerry M. Nawrotek, Agata Borg, Aaron J. McIntosh, Pauline B. Houghton, Francesca M. Kjær, Svend McDonald, Neil Q. Structure Article RET receptor tyrosine kinase plays vital developmental and neuroprotective roles in metazoans. GDNF family ligands (GFLs) when bound to cognate GFRα co-receptors recognize and activate RET stimulating its cytoplasmic kinase function. The principles for RET ligand-co-receptor recognition are incompletely understood. Here, we report a crystal structure of the cadherin-like module (CLD1-4) from zebrafish RET revealing interdomain flexibility between CLD2 and CLD3. Comparison with a cryo-electron microscopy structure of a ligand-engaged zebrafish RET(ECD)-GDNF-GFRα1a complex indicates conformational changes within a clade-specific CLD3 loop adjacent to the co-receptor. Our observations indicate that RET is a molecular clamp with a flexible calcium-dependent arm that adapts to different GFRα co-receptors, while its rigid arm recognizes a GFL dimer to align both membrane-proximal cysteine-rich domains. We also visualize linear arrays of RET(ECD)-GDNF-GFRα1a suggesting that a conserved contact stabilizes higher-order species. Our study reveals that ligand-co-receptor recognition by RET involves both receptor plasticity and strict spacing of receptor dimers by GFL ligands. Cell Press 2021-07-01 /pmc/articles/PMC8266384/ /pubmed/33484636 http://dx.doi.org/10.1016/j.str.2020.12.012 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Adams, Sarah E. Purkiss, Andrew G. Knowles, Phillip P. Nans, Andrea Briggs, David C. Borg, Annabel Earl, Christopher P. Goodman, Kerry M. Nawrotek, Agata Borg, Aaron J. McIntosh, Pauline B. Houghton, Francesca M. Kjær, Svend McDonald, Neil Q. A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing |
title | A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing |
title_full | A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing |
title_fullStr | A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing |
title_full_unstemmed | A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing |
title_short | A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing |
title_sort | two-site flexible clamp mechanism for ret-gdnf-gfrα1 assembly reveals both conformational adaptation and strict geometric spacing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266384/ https://www.ncbi.nlm.nih.gov/pubmed/33484636 http://dx.doi.org/10.1016/j.str.2020.12.012 |
work_keys_str_mv | AT adamssarahe atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT purkissandrewg atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT knowlesphillipp atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT nansandrea atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT briggsdavidc atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT borgannabel atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT earlchristopherp atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT goodmankerrym atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT nawrotekagata atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT borgaaronj atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT mcintoshpaulineb atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT houghtonfrancescam atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT kjærsvend atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT mcdonaldneilq atwositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT adamssarahe twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT purkissandrewg twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT knowlesphillipp twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT nansandrea twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT briggsdavidc twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT borgannabel twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT earlchristopherp twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT goodmankerrym twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT nawrotekagata twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT borgaaronj twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT mcintoshpaulineb twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT houghtonfrancescam twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT kjærsvend twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing AT mcdonaldneilq twositeflexibleclampmechanismforretgdnfgfra1assemblyrevealsbothconformationaladaptationandstrictgeometricspacing |