Cargando…
Reduction of Lipid-Core Burden Index in Nonculprit Lesions at Follow-Up after ST-Elevation Myocardial Infarction: A Randomized Study of Bioresorbable Vascular Scaffold versus Optimal Medical Therapy
BACKGROUND: Non-flow-limiting nonculprit lesions (NCL) that contain a large lipid-rich necrotic core (nonculprit lipid-rich plaques (NC-LRP)) are most likely to cause recurrent acute coronary syndrome after ST-elevation myocardial infarction (STEMI). Near-infrared spectroscopy (NIRS) detects LRPs us...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266479/ https://www.ncbi.nlm.nih.gov/pubmed/34290573 http://dx.doi.org/10.1155/2021/5590093 |
_version_ | 1783719956124270592 |
---|---|
author | Kefer, Joelle Chenu, Patrick Gurné, Olivier Maes, Frederic Tamakloé, Théophile Beauloye, Christophe |
author_facet | Kefer, Joelle Chenu, Patrick Gurné, Olivier Maes, Frederic Tamakloé, Théophile Beauloye, Christophe |
author_sort | Kefer, Joelle |
collection | PubMed |
description | BACKGROUND: Non-flow-limiting nonculprit lesions (NCL) that contain a large lipid-rich necrotic core (nonculprit lipid-rich plaques (NC-LRP)) are most likely to cause recurrent acute coronary syndrome after ST-elevation myocardial infarction (STEMI). Near-infrared spectroscopy (NIRS) detects LRPs using the maximum 4 mm lipid-core burden index (maxLCBI(4 mm)). Few data are available regarding NIRS-guided therapy of these NC-LRPs, which are a potential target for preventive stenting. Bioresorbable vascular scaffold (BVS) provides local drug delivery and could facilitate plaque passivation after resorption. This study sought to assess the safety of BVS implantation in NC-LRPs and its efficacy in reducing maxLCBI(4 mm) at 2-year follow-up after STEMI. METHODS AND RESULTS: In total, 33 non-flow-limiting NCLs from 29 STEMI patients were included in this study. Of these, 15 were LRPs and were randomly assigned to either the BVS + optimal medical therapy (OMT) arm (group 1; N = 7) or the OMT arm (group 2; N = 8). At baseline, there were no differences in plaque characteristics between groups (fractional flow reserve: 0.85 ± 0.04 vs. 0.89 ± 0.06; diameter stenosis (DS): 43.4 ± 8 vs. 40.1 ± 10.7%; plaque burden 54.98 ± 5.8 vs. 49.76 ± 8.31%; and maxLCBI(4 mm) 402 [348; 564] vs. 373 [298; 516]; p=NS for all comparisons between groups 1 and 2, respectively). Seven BVSs were implanted 3 ± 1 days after STEMI in six patients, without complications. At angiographic follow-up (712 [657; 740] days), a significant and similar reduction of maxLCBI(4 mm) was observed in both groups, with a median change of 306 [257; 377] in group 1 vs. 300 [278; 346] in group 2 (p=0.44). DS was significantly lower in group 1 vs. group 2 (19.8 ± 7 vs. 41.7 ± 13%, p=0.003), while plaque burden remained unchanged in both groups. Overall survival was 100%, target lesion failure was 13%, and stent thrombosis was 0%. CONCLUSIONS: BVS + OMT and OMT appear as similarly safe and effective in reducing maxLCBI(4mm) in NC-LRPs at 2-year follow-up after STEMI. |
format | Online Article Text |
id | pubmed-8266479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-82664792021-07-20 Reduction of Lipid-Core Burden Index in Nonculprit Lesions at Follow-Up after ST-Elevation Myocardial Infarction: A Randomized Study of Bioresorbable Vascular Scaffold versus Optimal Medical Therapy Kefer, Joelle Chenu, Patrick Gurné, Olivier Maes, Frederic Tamakloé, Théophile Beauloye, Christophe J Interv Cardiol Research Article BACKGROUND: Non-flow-limiting nonculprit lesions (NCL) that contain a large lipid-rich necrotic core (nonculprit lipid-rich plaques (NC-LRP)) are most likely to cause recurrent acute coronary syndrome after ST-elevation myocardial infarction (STEMI). Near-infrared spectroscopy (NIRS) detects LRPs using the maximum 4 mm lipid-core burden index (maxLCBI(4 mm)). Few data are available regarding NIRS-guided therapy of these NC-LRPs, which are a potential target for preventive stenting. Bioresorbable vascular scaffold (BVS) provides local drug delivery and could facilitate plaque passivation after resorption. This study sought to assess the safety of BVS implantation in NC-LRPs and its efficacy in reducing maxLCBI(4 mm) at 2-year follow-up after STEMI. METHODS AND RESULTS: In total, 33 non-flow-limiting NCLs from 29 STEMI patients were included in this study. Of these, 15 were LRPs and were randomly assigned to either the BVS + optimal medical therapy (OMT) arm (group 1; N = 7) or the OMT arm (group 2; N = 8). At baseline, there were no differences in plaque characteristics between groups (fractional flow reserve: 0.85 ± 0.04 vs. 0.89 ± 0.06; diameter stenosis (DS): 43.4 ± 8 vs. 40.1 ± 10.7%; plaque burden 54.98 ± 5.8 vs. 49.76 ± 8.31%; and maxLCBI(4 mm) 402 [348; 564] vs. 373 [298; 516]; p=NS for all comparisons between groups 1 and 2, respectively). Seven BVSs were implanted 3 ± 1 days after STEMI in six patients, without complications. At angiographic follow-up (712 [657; 740] days), a significant and similar reduction of maxLCBI(4 mm) was observed in both groups, with a median change of 306 [257; 377] in group 1 vs. 300 [278; 346] in group 2 (p=0.44). DS was significantly lower in group 1 vs. group 2 (19.8 ± 7 vs. 41.7 ± 13%, p=0.003), while plaque burden remained unchanged in both groups. Overall survival was 100%, target lesion failure was 13%, and stent thrombosis was 0%. CONCLUSIONS: BVS + OMT and OMT appear as similarly safe and effective in reducing maxLCBI(4mm) in NC-LRPs at 2-year follow-up after STEMI. Hindawi 2021-07-01 /pmc/articles/PMC8266479/ /pubmed/34290573 http://dx.doi.org/10.1155/2021/5590093 Text en Copyright © 2021 Joelle Kefer et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kefer, Joelle Chenu, Patrick Gurné, Olivier Maes, Frederic Tamakloé, Théophile Beauloye, Christophe Reduction of Lipid-Core Burden Index in Nonculprit Lesions at Follow-Up after ST-Elevation Myocardial Infarction: A Randomized Study of Bioresorbable Vascular Scaffold versus Optimal Medical Therapy |
title | Reduction of Lipid-Core Burden Index in Nonculprit Lesions at Follow-Up after ST-Elevation Myocardial Infarction: A Randomized Study of Bioresorbable Vascular Scaffold versus Optimal Medical Therapy |
title_full | Reduction of Lipid-Core Burden Index in Nonculprit Lesions at Follow-Up after ST-Elevation Myocardial Infarction: A Randomized Study of Bioresorbable Vascular Scaffold versus Optimal Medical Therapy |
title_fullStr | Reduction of Lipid-Core Burden Index in Nonculprit Lesions at Follow-Up after ST-Elevation Myocardial Infarction: A Randomized Study of Bioresorbable Vascular Scaffold versus Optimal Medical Therapy |
title_full_unstemmed | Reduction of Lipid-Core Burden Index in Nonculprit Lesions at Follow-Up after ST-Elevation Myocardial Infarction: A Randomized Study of Bioresorbable Vascular Scaffold versus Optimal Medical Therapy |
title_short | Reduction of Lipid-Core Burden Index in Nonculprit Lesions at Follow-Up after ST-Elevation Myocardial Infarction: A Randomized Study of Bioresorbable Vascular Scaffold versus Optimal Medical Therapy |
title_sort | reduction of lipid-core burden index in nonculprit lesions at follow-up after st-elevation myocardial infarction: a randomized study of bioresorbable vascular scaffold versus optimal medical therapy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266479/ https://www.ncbi.nlm.nih.gov/pubmed/34290573 http://dx.doi.org/10.1155/2021/5590093 |
work_keys_str_mv | AT keferjoelle reductionoflipidcoreburdenindexinnonculpritlesionsatfollowupafterstelevationmyocardialinfarctionarandomizedstudyofbioresorbablevascularscaffoldversusoptimalmedicaltherapy AT chenupatrick reductionoflipidcoreburdenindexinnonculpritlesionsatfollowupafterstelevationmyocardialinfarctionarandomizedstudyofbioresorbablevascularscaffoldversusoptimalmedicaltherapy AT gurneolivier reductionoflipidcoreburdenindexinnonculpritlesionsatfollowupafterstelevationmyocardialinfarctionarandomizedstudyofbioresorbablevascularscaffoldversusoptimalmedicaltherapy AT maesfrederic reductionoflipidcoreburdenindexinnonculpritlesionsatfollowupafterstelevationmyocardialinfarctionarandomizedstudyofbioresorbablevascularscaffoldversusoptimalmedicaltherapy AT tamakloetheophile reductionoflipidcoreburdenindexinnonculpritlesionsatfollowupafterstelevationmyocardialinfarctionarandomizedstudyofbioresorbablevascularscaffoldversusoptimalmedicaltherapy AT beauloyechristophe reductionoflipidcoreburdenindexinnonculpritlesionsatfollowupafterstelevationmyocardialinfarctionarandomizedstudyofbioresorbablevascularscaffoldversusoptimalmedicaltherapy |