Cargando…
Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA–DNA hybrid imaging
R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA–DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266564/ https://www.ncbi.nlm.nih.gov/pubmed/34232287 http://dx.doi.org/10.1083/jcb.202101092 |
_version_ | 1783719971172384768 |
---|---|
author | Crossley, Magdalena P. Brickner, Joshua R. Song, Chenlin Zar, Su Mon Thin Maw, Su S. Chédin, Frédéric Tsai, Miaw-Sheue Cimprich, Karlene A. |
author_facet | Crossley, Magdalena P. Brickner, Joshua R. Song, Chenlin Zar, Su Mon Thin Maw, Su S. Chédin, Frédéric Tsai, Miaw-Sheue Cimprich, Karlene A. |
author_sort | Crossley, Magdalena P. |
collection | PubMed |
description | R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA–DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic because it readily binds to double-stranded RNA (dsRNA) in vitro and in vivo, giving rise to nonspecific signal. In contrast, purified, catalytically inactive human RNase H1 tagged with GFP (GFP-dRNH1) is a more specific reagent for imaging RNA–DNA hybrids. GFP-dRNH1 binds strongly to RNA–DNA hybrids but not to dsRNA oligonucleotides in fixed human cells and is not susceptible to binding endogenous RNA. Furthermore, we demonstrate that purified GFP-dRNH1 can be applied to fixed cells to detect hybrids after their induction, thereby bypassing the need for cell line engineering. GFP-dRNH1 therefore promises to be a versatile tool for imaging and quantifying RNA–DNA hybrids under a wide range of conditions. |
format | Online Article Text |
id | pubmed-8266564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-82665642022-03-06 Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA–DNA hybrid imaging Crossley, Magdalena P. Brickner, Joshua R. Song, Chenlin Zar, Su Mon Thin Maw, Su S. Chédin, Frédéric Tsai, Miaw-Sheue Cimprich, Karlene A. J Cell Biol Tools R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA–DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic because it readily binds to double-stranded RNA (dsRNA) in vitro and in vivo, giving rise to nonspecific signal. In contrast, purified, catalytically inactive human RNase H1 tagged with GFP (GFP-dRNH1) is a more specific reagent for imaging RNA–DNA hybrids. GFP-dRNH1 binds strongly to RNA–DNA hybrids but not to dsRNA oligonucleotides in fixed human cells and is not susceptible to binding endogenous RNA. Furthermore, we demonstrate that purified GFP-dRNH1 can be applied to fixed cells to detect hybrids after their induction, thereby bypassing the need for cell line engineering. GFP-dRNH1 therefore promises to be a versatile tool for imaging and quantifying RNA–DNA hybrids under a wide range of conditions. Rockefeller University Press 2021-07-07 /pmc/articles/PMC8266564/ /pubmed/34232287 http://dx.doi.org/10.1083/jcb.202101092 Text en © 2021 Crossley et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Tools Crossley, Magdalena P. Brickner, Joshua R. Song, Chenlin Zar, Su Mon Thin Maw, Su S. Chédin, Frédéric Tsai, Miaw-Sheue Cimprich, Karlene A. Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA–DNA hybrid imaging |
title | Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA–DNA hybrid imaging |
title_full | Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA–DNA hybrid imaging |
title_fullStr | Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA–DNA hybrid imaging |
title_full_unstemmed | Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA–DNA hybrid imaging |
title_short | Catalytically inactive, purified RNase H1: A specific and sensitive probe for RNA–DNA hybrid imaging |
title_sort | catalytically inactive, purified rnase h1: a specific and sensitive probe for rna–dna hybrid imaging |
topic | Tools |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266564/ https://www.ncbi.nlm.nih.gov/pubmed/34232287 http://dx.doi.org/10.1083/jcb.202101092 |
work_keys_str_mv | AT crossleymagdalenap catalyticallyinactivepurifiedrnaseh1aspecificandsensitiveprobeforrnadnahybridimaging AT bricknerjoshuar catalyticallyinactivepurifiedrnaseh1aspecificandsensitiveprobeforrnadnahybridimaging AT songchenlin catalyticallyinactivepurifiedrnaseh1aspecificandsensitiveprobeforrnadnahybridimaging AT zarsumonthin catalyticallyinactivepurifiedrnaseh1aspecificandsensitiveprobeforrnadnahybridimaging AT mawsus catalyticallyinactivepurifiedrnaseh1aspecificandsensitiveprobeforrnadnahybridimaging AT chedinfrederic catalyticallyinactivepurifiedrnaseh1aspecificandsensitiveprobeforrnadnahybridimaging AT tsaimiawsheue catalyticallyinactivepurifiedrnaseh1aspecificandsensitiveprobeforrnadnahybridimaging AT cimprichkarlenea catalyticallyinactivepurifiedrnaseh1aspecificandsensitiveprobeforrnadnahybridimaging |