Cargando…
Transforming obstetric ultrasound into data science using eye tracking, voice recording, transducer motion and ultrasound video
Ultrasound is the primary modality for obstetric imaging and is highly sonographer dependent. Long training period, insufficient recruitment and poor retention of sonographers are among the global challenges in the expansion of ultrasound use. For the past several decades, technical advancements in...
Autores principales: | Drukker, Lior, Sharma, Harshita, Droste, Richard, Alsharid, Mohammad, Chatelain, Pierre, Noble, J. Alison, Papageorghiou, Aris T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266837/ https://www.ncbi.nlm.nih.gov/pubmed/34238950 http://dx.doi.org/10.1038/s41598-021-92829-1 |
Ejemplares similares
-
Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging
por: Sharma, Harshita, et al.
Publicado: (2021) -
Gaze-Probe Joint Guidance with Multi-task Learning in Obstetric Ultrasound Scanning
por: Men, Qianhui, et al.
Publicado: (2023) -
Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology
por: Drukker, L., et al.
Publicado: (2020) -
Task model-specific operator skill assessment in routine fetal ultrasound scanning
por: Wang, Yipei, et al.
Publicado: (2022) -
Expected‐value bias in routine third‐trimester growth scans
por: Drukker, L., et al.
Publicado: (2020)