Cargando…
Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs
The dynamic contrast-enhanced MR imaging plays a crucial role in evaluating the effectiveness of neoadjuvant chemotherapy (NAC) even since its early stage through the prediction of the final pathological complete response (pCR). In this study, we proposed a transfer learning approach to predict if a...
Autores principales: | Comes, Maria Colomba, Fanizzi, Annarita, Bove, Samantha, Didonna, Vittorio, Diotaiuti, Sergio, La Forgia, Daniele, Latorre, Agnese, Martinelli, Eugenio, Mencattini, Arianna, Nardone, Annalisa, Paradiso, Angelo Virgilio, Ressa, Cosmo Maurizio, Tamborra, Pasquale, Lorusso, Vito, Massafra, Raffaella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266861/ https://www.ncbi.nlm.nih.gov/pubmed/34238968 http://dx.doi.org/10.1038/s41598-021-93592-z |
Ejemplares similares
-
Early Prediction of Breast Cancer Recurrence for Patients Treated with Neoadjuvant Chemotherapy: A Transfer Learning Approach on DCE-MRIs
por: Comes, Maria Colomba, et al.
Publicado: (2021) -
Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy
por: Massafra, Raffaella, et al.
Publicado: (2022) -
A machine learning ensemble approach for 5- and 10-year breast cancer invasive disease event classification
por: Massafra, Raffaella, et al.
Publicado: (2022) -
Radiomic Feature Reduction Approach to Predict Breast Cancer by Contrast-Enhanced Spectral Mammography Images
por: Massafra, Raffaella, et al.
Publicado: (2021) -
Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
por: Massafra, Raffaella, et al.
Publicado: (2023)