Cargando…

Magnetism in quasi-two-dimensional tri-layer La(2.1)Sr(1.9)Mn(3)O(10) manganite

The tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] manganites of Ruddlesden–Popper (RP) series are naturally arranged layered structure with alternate stacking of ω-MnO[Formula: see text] (ω = 3) planes and rock-salt type block layers (La, Sr)[Formul...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiwari, Jeetendra Kumar, Kumar, Birendra, Chauhan, Harish Chandr, Ghosh, Subhasis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266891/
https://www.ncbi.nlm.nih.gov/pubmed/34238952
http://dx.doi.org/10.1038/s41598-021-93290-w
Descripción
Sumario:The tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] manganites of Ruddlesden–Popper (RP) series are naturally arranged layered structure with alternate stacking of ω-MnO[Formula: see text] (ω = 3) planes and rock-salt type block layers (La, Sr)[Formula: see text] O[Formula: see text] along c-axis. The dimensionality of the RP series manganites depends on the number of perovskite layers and significantly affects the magnetic and transport properties of the system. Generally, when a ferromagnetic material undergoes a magnetic phase transition from ferromagnetic to paramagnetic state, the magnetic moment of the system becomes zero above the transition temperature (T[Formula: see text] ). However, the tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] shows non-zero magnetic moment above T[Formula: see text] and also another transition at higher temperature T[Formula: see text] 263 K. The non-zero magnetization above T[Formula: see text] emphasizes that the phase transition in tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] not a ferromagnetic to paramagnetic state. We show here the non-zero magnetic moment above T[Formula: see text] is due to the quasi-two-dimensional nature of the tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] manganite. The scaling of the magnetic entropy change confirms the second-order phase transition and the critical behavior of phase transition has been studied around T[Formula: see text] to understand the low dimensional magnetism in tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] . We have obtained the critical exponents for tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] , which belong to the short-range two-dimensional (2D)-Ising universality class. The low dimensional magnetism in tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] manganite is also explained with the help of renormalization group theoretical approach for short-range 2D-Ising systems. It has been shown that the layered structure of tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] results in three different types of interactions intra-planer ([Formula: see text] ), intra-tri-layer ([Formula: see text] ) and inter-tri-layer ([Formula: see text] ) such that [Formula: see text] and competition among these give rise to the canted antiferromagnetic spin structure above T[Formula: see text] . Based on the similar magnetic interaction in bi-layer manganite, we propose that the tri-layer La[Formula: see text] Sr[Formula: see text] Mn[Formula: see text] O[Formula: see text] should be able to host the skyrmion below T[Formula: see text] due to its strong anisotropy and layered structure.