Cargando…
Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data
Major depressive disorder (MDD) is complex and multifactorial, posing a major challenge of tailoring the optimal medication for each patient. Current practice for MDD treatment mainly relies on trial and error, with an estimated 42–53% response rates for antidepressant use. Here, we sought to genera...
Autores principales: | Taliaz, Dekel, Spinrad, Amit, Barzilay, Ran, Barnett-Itzhaki, Zohar, Averbuch, Dana, Teltsh, Omri, Schurr, Roy, Darki-Morag, Sne, Lerer, Bernard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266902/ https://www.ncbi.nlm.nih.gov/pubmed/34238923 http://dx.doi.org/10.1038/s41398-021-01488-3 |
Ejemplares similares
-
Optimizing prediction of response to antidepressant medications using machine learning and environmental data
por: Spinrad, A., et al.
Publicado: (2021) -
Predicting the effect of antidepressant treatment on relief from anxiety symptoms
por: Spinrad, A., et al.
Publicado: (2022) -
Effects of chronic exposure to ambient air pollutants, demographic, and socioeconomic factors on COVID-19 morbidity: The Israeli case study
por: Levi, Adi, et al.
Publicado: (2021) -
Skills development in infants: a possible role for widespread neurogenesis?
por: Taliaz, Dekel
Publicado: (2013) -
A New Characterization of Mental Health Disorders Using Digital Behavioral Data: Evidence from Major Depressive Disorder
por: Taliaz, Dekel, et al.
Publicado: (2021)