Cargando…
Combing machine learning and elemental profiling for geographical authentication of Chinese Geographical Indication (GI) rice
Identification of geographical origin is of great importance for protecting the authenticity of valuable agri-food products with designated origins. In this study, a robust and accurate analytical method that could authenticate the geographical origin of Geographical Indication (GI) products was dev...
Autores principales: | Xu, Fei, Kong, Fanzhou, Peng, Hong, Dong, Shuofei, Gao, Weiyu, Zhang, Guangtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266907/ https://www.ncbi.nlm.nih.gov/pubmed/34238934 http://dx.doi.org/10.1038/s41538-021-00100-8 |
Ejemplares similares
-
Authenticating the geographical origin of the Chinese yam (Tiegun) with stable isotopes and multiple elements
por: Xiong, Feng, et al.
Publicado: (2023) -
Chemometric Analysis of Elemental Fingerprints for GE Authentication of Multiple Geographical Origins
por: Xu, Lu, et al.
Publicado: (2019) -
Authenticity and Typicity of Traditional Cheeses: A Review on Geographical Origin Authentication Methods
por: Cardin, Marco, et al.
Publicado: (2022) -
Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements
por: Zhou, Xiaoteng, et al.
Publicado: (2018) -
Geographical Origin Authentication of Agri-Food Products: A Review
por: Katerinopoulou, Katerina, et al.
Publicado: (2020)