Cargando…

Transcellular penetration of Treponema phagedenis isolated from papillomatous digital dermatitis in polarized normal human epidermal keratinocytes in vitro

Papillomatous digital dermatitis (PDD) is a polymicrobial infection causing lameness in dairy cattle. Culture-independent analysis has shown that Treponema phagedenis is present consistently and predominantly in the lesions. However, the pathogenesis of PDD, especially the tissue penetration pathway...

Descripción completa

Detalles Bibliográficos
Autores principales: KHEMGAEW, Rathanon, OMACHI, Mari, TAKESADA, Tomoe, VETCHAPITAK, Torrung, SATO, Hiroyuki, TANIGUCHI, Takako, MISAWA, Naoaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Veterinary Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267188/
https://www.ncbi.nlm.nih.gov/pubmed/33853987
http://dx.doi.org/10.1292/jvms.21-0034
Descripción
Sumario:Papillomatous digital dermatitis (PDD) is a polymicrobial infection causing lameness in dairy cattle. Culture-independent analysis has shown that Treponema phagedenis is present consistently and predominantly in the lesions. However, the pathogenesis of PDD, especially the tissue penetration pathway, has not been examined. In the present study, we investigated whether T. phagedenis strains isolated from PDD produce proteolytic enzyme (s) for disruption of the epithelial cell barrier and have the ability to translocate in polarized normal human epidermal keratinocytes (NHEK) in vitro. Ten strains of T. phagedenis isolated from lesions did not show proteolytic activity on modified skim milk agar, although a human strain of T. denticola used as a control showed such activity. The integrity of tight junctions was monitored by measurement of transepithelial electrical resistance (TER). The TER values after inoculation of the T. phagedenis strains examined did not change during the experimental period; however, apical to basolateral translocation of T. phagedenis was confirmed after 24 hr by microscopy and Treponema-specific PCR. We further confirmed that translocation of T. phagedenis was accelerated by co-inoculation with live T. denticola, but not with heat-killed organisms. Furthermore, tight junction ZO-1 protein was not lost intensity after inoculation with T. phagedenis and the organism was observed in NHEK cells using a florescence microscope. These results suggest that T. phagedenis strains may translocate via a transcellular route in vitro and that the invasion is accelerated by other bacteria, such as T. denticola, producing proteolytic activity.