Cargando…
Deep Learning Applied to Automated Segmentation of Geographic Atrophy in Fundus Autofluorescence Images
PURPOSE: This study describes the development of a deep learning algorithm based on the U-Net architecture for automated segmentation of geographic atrophy (GA) lesions in fundus autofluorescence (FAF) images. METHODS: Image preprocessing and normalization by modified adaptive histogram equalization...
Autores principales: | Arslan, Janan, Samarasinghe, Gihan, Sowmya, Arcot, Benke, Kurt K., Hodgson, Lauren A. B., Guymer, Robyn H., Baird, Paul N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267211/ https://www.ncbi.nlm.nih.gov/pubmed/34228106 http://dx.doi.org/10.1167/tvst.10.8.2 |
Ejemplares similares
-
Model Structure Uncertainty in the Characterization and Growth of Geographic Atrophy
por: Arslan, Janan, et al.
Publicado: (2021) -
Artificial Intelligence Algorithms for Analysis of Geographic Atrophy: A Review and Evaluation
por: Arslan, Janan, et al.
Publicado: (2020) -
Progression of Geographic Atrophy: Epistemic Uncertainties Affecting Mathematical Models and Machine Learning
por: Arslan, Janan, et al.
Publicado: (2021) -
Abnormalities of Fundus Autofluorescence in Pigmented Paravenous Chorioretinal Atrophy
por: Hashimoto, Yuki, et al.
Publicado: (2012) -
Use of Fundus Autofluorescence Combined with Optical Coherence Tomography for Diagnose of Geographic Atrophy in Age-Related Macular Degeneration
por: Massamba, Nathalie, et al.
Publicado: (2019)