Cargando…
A Randomized Crossover Trial on the Acute Cardiovascular Demands During Flywheel Exercise
In a randomized crossover trial, we examined whether age plays a role in the mean arterial pressure (MAP) response during a vigorous flywheel exercise of varying load. We hypothesized that the magnitude of increase in the MAP during the flywheel exercise would increase in proportion to advancing age...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267577/ https://www.ncbi.nlm.nih.gov/pubmed/34248660 http://dx.doi.org/10.3389/fphys.2021.665462 |
Sumario: | In a randomized crossover trial, we examined whether age plays a role in the mean arterial pressure (MAP) response during a vigorous flywheel exercise of varying load. We hypothesized that the magnitude of increase in the MAP during the flywheel exercise would increase in proportion to advancing age, thereby imposing a significant challenge to the cardiovascular system. A total of 30 participants of both sexes (age range from 20–55 y, 37% women) underwent a detailed medical examination, and their maximal oxygen uptake was determined. They performed a squat exercise (2 sets × 7 repetitions) on a flywheel ergometer at three randomly assigned moments of inertia set at 0.025, 0.05, and 0.075 kg m(2), while the cardiovascular response was continuously recorded via a Task force monitor. Compared to the resting values, robust rises in the MAP were observed during all three flywheel loads, reaching the highest value of 179 ± 4 mmHg (p = 0.001) during the highest load. In parallel, the cardiac index (cardiac output normalized by the body surface area) was two-fold greater during all the flywheel loads compared to rest, and at a high load, exclusively, the total peripheral resistance increased by 11% (p = 0.001). The rise in heart rate compensated for a load-dependent drop in the stroke index (stroke volume normalized by the body surface area). In our study population, no correlations were observed between the relative increase in the MAP and the participants’ age for the three flywheel loads. The present findings suggest that the larger moments of inertia impose a substantial burden to the cardiovascular system, without apparent associated age-differences of the relative magnitude of MAP rise throughout the exercise. |
---|