Cargando…
Clinical and Molecular Heterogeneity in Patients with Innate Resistance to Anti-PD-1 +/− Anti-CTLA-4 Immunotherapy in Metastatic Melanoma Reveals Distinct Therapeutic Targets
SIMPLE SUMMARY: Immune checkpoint therapies have significantly improved the survival of patients with metastatic melanoma, however approximately 50% of patients exhibit no response. Understanding the underlying clinical, pathologic and genetic factors associated with failed response to immunotherapi...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267740/ https://www.ncbi.nlm.nih.gov/pubmed/34202352 http://dx.doi.org/10.3390/cancers13133186 |
Sumario: | SIMPLE SUMMARY: Immune checkpoint therapies have significantly improved the survival of patients with metastatic melanoma, however approximately 50% of patients exhibit no response. Understanding the underlying clinical, pathologic and genetic factors associated with failed response to immunotherapies is key to identifying therapeutic strategies to overcome resistance. Here, we investigated the baseline tumour characteristics of patients with innate resistance to anti-PD-1-based immunotherapies. This study is the first on non-responders to integrate detailed clinical and molecular analyses and has identified two distinct clusters of patients with clinically relevant key targetable proteins. ABSTRACT: While immune checkpoint inhibitors targeting the CTLA-4 and PD-1 receptors have significantly improved outcomes of many patients with metastatic melanoma, there remains a group of patients who demonstrate no benefit. In this study, we sought to characterise patients who do not respond to anti-PD-1-based therapies based on their clinical, genetic and immune profiles. Forty patients with metastatic melanoma who did not respond to anti-PD-1 +/− anti-CTLA-4 treatment were identified. Targeted RNA sequencing (n = 37) was performed on pretreatment formalin-fixed paraffin-embedded (FFPE) melanoma specimens. Patients clustered into two groups based on the expression profiles of 26 differentially expressed genes: an immune gene rich group (n = 17) expressing genes associated with immune and T cell signalling, and a second group (n = 20) expressing genes associated with metabolism, signal transduction and neuronal signalling. Multiplex immunohistochemistry validated significantly higher densities of tumour-infiltrating lymphocytes (TILs) and macrophages in the immune gene-rich group. This TIL-high subset of patients also demonstrated higher expression of alternative immune-regulatory drug targets compared to the TIL-low group. Patients were also subdivided into rapid progressors and other progressors (cut-off 2 mo progression-free survival), with significantly lower TILs (p = 0.04) and CD68+ macrophages (p = 0.0091) in the rapid progressors. Furthermore, a trend towards a higher tumour burden was observed in rapid progressors (p = 0.06). These data highlight the need for a personalised and multilayer (clinical and molecular) approach for identifying the most appropriate treatments for anti-PD-1 resistant patients and provides insight into how individual treatment strategies can be achieved. |
---|