Cargando…
Combined Naïve Bayesian, Chemical Fingerprints and Molecular Docking Classifiers to Model and Predict Androgen Receptor Binding Data for Environmentally- and Health-Sensitive Substances
Many chemicals that enter the environment, food chain, and the human body can disrupt androgen-dependent pathways and mimic hormones and therefore, may be responsible for multiple diseases from reproductive to tumor. Thus, modeling and predicting androgen receptor activity is an important area of re...
Autores principales: | García-Sosa, Alfonso T., Maran, Uko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267747/ https://www.ncbi.nlm.nih.gov/pubmed/34206613 http://dx.doi.org/10.3390/ijms22136695 |
Ejemplares similares
-
Best Practices for QSAR Model Reporting: Physical and Chemical Properties, Ecotoxicity, Environmental Fate, Human Health, and Toxicokinetics Endpoints
por: Piir, Geven, et al.
Publicado: (2018) -
Intrinsic Aqueous Solubility: Mechanistically Transparent Data-Driven Modeling of Drug Substances
por: Oja, Mare, et al.
Publicado: (2022) -
Building an Ensemble of Fine-Tuned Naive Bayesian Classifiers for Text Classification
por: El Hindi, Khalil, et al.
Publicado: (2018) -
Multinomial Naive Bayesian Classifier Framework for Systematic Analysis of Smart IoT Devices
por: Kaushik, Keshav, et al.
Publicado: (2022) -
A Bayesian latent class extension of naive Bayesian classifier and its application to the classification of gastric cancer patients
por: Gohari, Kimiya, et al.
Publicado: (2023)