Cargando…
A Novel Nanobody Precisely Visualizes Phosphorylated Histone H2AX in Living Cancer Cells under Drug-Induced Replication Stress
SIMPLE SUMMARY: γ-H2AX, a phosphorylated variant of histone H2A, is a widely used biomarker of DNA replication stress. To develop an immunological probe able to detect and track γ-H2AX in live cancer cells, we have isolated single domain antibodies (called nanobodies) that are easily expressed as fu...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267817/ https://www.ncbi.nlm.nih.gov/pubmed/34282773 http://dx.doi.org/10.3390/cancers13133317 |
Sumario: | SIMPLE SUMMARY: γ-H2AX, a phosphorylated variant of histone H2A, is a widely used biomarker of DNA replication stress. To develop an immunological probe able to detect and track γ-H2AX in live cancer cells, we have isolated single domain antibodies (called nanobodies) that are easily expressed as functional recombinant proteins and here we report the extensive characterization of a novel nanobody that specifically recognizes γ-H2AX. The interaction of this nanobody with the C-terminal end of γ-H2AX was determined by X-ray crystallography. Moreover, the generation of a bivalent nanobody allowed us to precisely detect γ-H2AX foci in drug-treated cells as efficiently as with commercially available conventional antibodies. Furthermore, we tracked γ-H2AX foci in live cells upon intracellular delivery of the bivalent nanobody fused to the red fluorescent protein dTomato, making, consequently, this new cost-effective reagent useful for studying drug-induced replication stress in both fixed and living cancer cells. ABSTRACT: Histone H2AX phosphorylated at serine 139 (γ-H2AX) is a hallmark of DNA damage, signaling the presence of DNA double-strand breaks and global replication stress in mammalian cells. While γ-H2AX can be visualized with antibodies in fixed cells, its detection in living cells was so far not possible. Here, we used immune libraries and phage display to isolate nanobodies that specifically bind to γ-H2AX. We solved the crystal structure of the most soluble nanobody in complex with the phosphopeptide corresponding to the C-terminus of γ-H2AX and show the atomic constituents behind its specificity. We engineered a bivalent version of this nanobody and show that bivalency is essential to quantitatively visualize γ-H2AX in fixed drug-treated cells. After labelling with a chemical fluorophore, we were able to detect γ-H2AX in a single-step assay with the same sensitivity as with validated antibodies. Moreover, we produced fluorescent nanobody-dTomato fusion proteins and applied a transduction strategy to visualize with precision γ-H2AX foci present in intact living cells following drug treatment. Together, this novel tool allows performing fast screenings of genotoxic drugs and enables to study the dynamics of this particular chromatin modification in individual cancer cells under a variety of conditions. |
---|