Cargando…
Post-stroke Anxiety Analysis via Machine Learning Methods
Post-stroke anxiety (PSA) has caused wide public concern in recent years, and the study on risk factors analysis and prediction is still an open issue. With the deepening of the research, machine learning has been widely applied to various scenarios and make great achievements increasingly, which br...
Autores principales: | Wang, Jirui, Zhao, Defeng, Lin, Meiqing, Huang, Xinyu, Shang, Xiuli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267915/ https://www.ncbi.nlm.nih.gov/pubmed/34248599 http://dx.doi.org/10.3389/fnagi.2021.657937 |
Ejemplares similares
-
Bilateral middle cerebellar peduncle lesions: Neuroimaging features and differential diagnoses
por: Jiang, Jiwei, et al.
Publicado: (2020) -
Machine learning algorithms assisted identification of post-stroke depression associated biological features
por: Zhang, Xintong, et al.
Publicado: (2023) -
The Prognostic Value of Homocysteine in Acute Ischemic Stroke Patients: A Systematic Review and Meta-Analysis
por: Huang, Shengming, et al.
Publicado: (2021) -
Gray Matter Alterations in Post-Traumatic Stress Disorder, Obsessive–Compulsive Disorder, and Social Anxiety Disorder
por: Cheng, Bochao, et al.
Publicado: (2015) -
Characterization of spleen and lymph node cell types via CITE-seq and machine learning methods
por: Li, Hao, et al.
Publicado: (2022)