Cargando…

Arpra: An Arbitrary Precision Range Analysis Library

Motivated by the challenge of investigating the reproducibility of spiking neural network simulations, we have developed the Arpra library: an open source C library for arbitrary precision range analysis based on the mixed Interval Arithmetic (IA)/Affine Arithmetic (AA) method. Arpra builds on this...

Descripción completa

Detalles Bibliográficos
Autores principales: Turner, James Paul, Nowotny, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267943/
https://www.ncbi.nlm.nih.gov/pubmed/34248530
http://dx.doi.org/10.3389/fninf.2021.632729
Descripción
Sumario:Motivated by the challenge of investigating the reproducibility of spiking neural network simulations, we have developed the Arpra library: an open source C library for arbitrary precision range analysis based on the mixed Interval Arithmetic (IA)/Affine Arithmetic (AA) method. Arpra builds on this method by implementing a novel mixed trimmed IA/AA, in which the error terms of AA ranges are minimised using information from IA ranges. Overhead rounding error is minimised by computing intermediate values as extended precision variables using the MPFR library. This optimisation is most useful in cases where the ratio of overhead error to range width is high. Three novel affine term reduction strategies improve memory efficiency by merging affine terms of lesser significance. We also investigate the viability of using mixed trimmed IA/AA and other AA methods for studying reproducibility in unstable spiking neural network simulations.