Cargando…
Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection
BACKGROUND: To evaluate the performance of a Deep Learning Image Reconstruction (DLIR) algorithm in pediatric head CT for improving image quality and lesion detection with 0.625 mm thin-slice images. METHODS: Low-dose axial head CT scans of 50 children with 120 kV, 0.8 s rotation and age-dependent 1...
Autores principales: | Sun, Jihang, Li, Haoyan, Wang, Bei, Li, Jianying, Li, Michelle, Zhou, Zuofu, Peng, Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268450/ https://www.ncbi.nlm.nih.gov/pubmed/34238229 http://dx.doi.org/10.1186/s12880-021-00637-w |
Ejemplares similares
-
Impact of deep learning image reconstructions (DLIR) on coronary artery calcium quantification
por: Rossi, Alexia, et al.
Publicado: (2022) -
Image quality improvement in low‐dose chest CT with deep learning image reconstruction
por: Tian, Qian, et al.
Publicado: (2022) -
Deep learning versus iterative image reconstruction algorithm for head CT in trauma
por: Alagic, Zlatan, et al.
Publicado: (2022) -
A Deep Learning Image Reconstruction Algorithm for Improving Image Quality and Hepatic Lesion Detectability in Abdominal Dual-Energy Computed Tomography: Preliminary Results
por: Chu, Bingqian, et al.
Publicado: (2023) -
Adaptation of Deep Learning Image Reconstruction for Pediatric Head CT: A Focus on the Image Quality
Publicado: (2023)