Cargando…
Machine Learning for Analyzing Non-Countermeasure Factors Affecting Early Spread of COVID-19
The COVID-19 pandemic affected the whole world, but not all countries were impacted equally. This opens the question of what factors can explain the initial faster spread in some countries compared to others. Many such factors are overshadowed by the effect of the countermeasures, so we studied the...
Autores principales: | Janko, Vito, Slapničar, Gašper, Dovgan, Erik, Reščič, Nina, Kolenik, Tine, Gjoreski, Martin, Smerkol, Maj, Gams, Matjaž, Luštrek, Mitja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268491/ https://www.ncbi.nlm.nih.gov/pubmed/34201618 http://dx.doi.org/10.3390/ijerph18136750 |
Ejemplares similares
-
What Actually Works for Activity Recognition in Scenarios with Significant Domain Shift: Lessons Learned from the 2019 and 2020 Sussex-Huawei Challenges †
por: Kalabakov, Stefan, et al.
Publicado: (2022) -
A machine-learning approach to a mobility policy proposal()
por: Shulajkovska, Miljana, et al.
Publicado: (2023) -
How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?
por: Gjoreski, Martin, et al.
Publicado: (2016) -
Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network
por: Slapničar, Gašper, et al.
Publicado: (2019) -
Classification of Hemodynamics Scenarios from a Public Radar Dataset Using a Deep Learning Approach
por: Slapničar, Gašper, et al.
Publicado: (2021)