Cargando…
SCOUR: a stepwise machine learning framework for predicting metabolite-dependent regulatory interactions
BACKGROUND: The topology of metabolic networks is both well-studied and remarkably well-conserved across many species. The regulation of these networks, however, is much more poorly characterized, though it is known to be divergent across organisms—two characteristics that make it difficult to model...
Autores principales: | Lee, Justin Y., Nguyen, Britney, Orosco, Carlos, Styczynski, Mark P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268592/ https://www.ncbi.nlm.nih.gov/pubmed/34238207 http://dx.doi.org/10.1186/s12859-021-04281-7 |
Ejemplares similares
-
LK-DFBA: a linear programming-based modeling strategy for capturing dynamics and metabolite-dependent regulation in metabolism
por: Dromms, Robert A., et al.
Publicado: (2020) -
Scouring in Calves
por: Parker, John M.
Publicado: (1893) -
Scouring in Calves
por: Gold, T. S.
Publicado: (1893) -
A stepwise framework for the normalization of array CGH data
por: Khojasteh, Mehrnoush, et al.
Publicado: (2005) -
CANDLE/Supervisor: a workflow framework for machine learning applied to cancer research
por: Wozniak, Justin M., et al.
Publicado: (2018)