Cargando…
Deep Learning-Based Stage-Wise Risk Stratification for Early Lung Adenocarcinoma in CT Images: A Multi-Center Study
SIMPLE SUMMARY: Prediction of the malignancy and invasiveness of ground glass nodules (GGNs) from computed tomography images is a crucial task for radiologists in risk stratification of early-stage lung adenocarcinoma. In order to solve this challenge, a two-stage deep neural network (DNN) was devel...
Autores principales: | Gong, Jing, Liu, Jiyu, Li, Haiming, Zhu, Hui, Wang, Tingting, Hu, Tingdan, Li, Menglei, Xia, Xianwu, Hu, Xianfang, Peng, Weijun, Wang, Shengping, Tong, Tong, Gu, Yajia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269183/ https://www.ncbi.nlm.nih.gov/pubmed/34209366 http://dx.doi.org/10.3390/cancers13133300 |
Ejemplares similares
-
Three-Dimensional CT Texture Analysis to Differentiate Colorectal Signet-Ring Cell Carcinoma and Adenocarcinoma
por: Yue, Yali, et al.
Publicado: (2019) -
Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan
por: Xia, Xianwu, et al.
Publicado: (2020) -
CT Morphological Features Integrated With Whole-Lesion Histogram Parameters to Predict Lung Metastasis for Colorectal Cancer Patients With Pulmonary Nodules
por: Hu, TingDan, et al.
Publicado: (2019) -
An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT
por: Zhou, Jing, et al.
Publicado: (2023) -
Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients
por: Wang, Renjie, et al.
Publicado: (2022)