Cargando…
SurvCNN: A Discrete Time-to-Event Cancer Survival Estimation Framework Using Image Representations of Omics Data
SIMPLE SUMMARY: Robust methods for modelling and estimation of cancer survival could be relevant in understanding and limiting the impact of cancer. This study was aimed at developing an efficient Machine learning (ML) pipeline that could model survival in Lung Adenocarcinoma (LUAD) patients. Image...
Autores principales: | Kalakoti, Yogesh, Yadav, Shashank, Sundar, Durai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269306/ https://www.ncbi.nlm.nih.gov/pubmed/34206288 http://dx.doi.org/10.3390/cancers13133106 |
Ejemplares similares
-
TransDTI: Transformer-Based Language Models for Estimating
DTIs and Building a Drug Recommendation Workflow
por: Kalakoti, Yogesh, et al.
Publicado: (2022) -
Deep Neural Network-Assisted Drug Recommendation Systems
for Identifying Potential Drug–Target Interactions
por: Kalakoti, Yogesh, et al.
Publicado: (2022) -
Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer
por: Malik, Vidhi, et al.
Publicado: (2021) -
GNN-surv: Discrete-Time Survival Prediction Using Graph Neural Networks
por: Kim, So Yeon
Publicado: (2023) -
Genome Sequence of a Potent Biosurfactant-Producing Bacterium, Franconibacter sp. Strain IITDAS19
por: Sharma, Jyoti, et al.
Publicado: (2022)