Cargando…
Predicting Postoperative Complications in Cancer Patients: A Survey Bridging Classical and Machine Learning Contributions to Postsurgical Risk Analysis
SIMPLE SUMMARY: Structured survey on the predictive analysis of postoperative complications in oncology, bridging classic risk scores with machine learning advances, and further establishing principles to guide the design of cohort studies and the predictive modeling of postsurgical risks. ABSTRACT:...
Autores principales: | Gonçalves, Daniel M., Henriques, Rui, Costa, Rafael S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269422/ https://www.ncbi.nlm.nih.gov/pubmed/34203189 http://dx.doi.org/10.3390/cancers13133217 |
Ejemplares similares
-
On the predictability of postoperative complications for cancer patients: a Portuguese cohort study
por: Gonçalves, Daniel, et al.
Publicado: (2021) -
Predicting metabolic fluxes from omics data via machine learning: Moving from knowledge-driven towards data-driven approaches
por: Gonçalves, Daniel M., et al.
Publicado: (2023) -
Utilizing Machine Learning Methods for Preoperative Prediction of Postsurgical Mortality and Intensive Care Unit Admission
por: Chiew, Calvin J., et al.
Publicado: (2020) -
Prediction models for chronic postsurgical pain in patients with breast cancer based on machine learning approaches
por: Sun, Chen, et al.
Publicado: (2023) -
THU114 Postsurgical Use Of Copeptin In The Prediction Of Postoperative Arginine Vasopressin Deficiency
por: Erickson, Dana Z, et al.
Publicado: (2023)