Cargando…

Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis

Nickel(Ni)/aluminium(Al) hybrid foams are Al base foams coated with Ni by electrodeposition. Hybrid foams offer an enhanced energy absorption capacity. To ensure a good adhering Ni coating, necessary for a shear resistant interface, the influence of a chemical pre-treatment of the base foam was inve...

Descripción completa

Detalles Bibliográficos
Autores principales: Luksch, Jutta, Jung, Anne, Pauly, Christoph, Derr, Ralf, Gruenewald, Patrick, Laub, Marc, Klaus, Manuela, Genzel, Christoph, Motz, Christian, Mücklich, Frank, Schaefer, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269473/
https://www.ncbi.nlm.nih.gov/pubmed/34206514
http://dx.doi.org/10.3390/ma14133473
_version_ 1783720587763384320
author Luksch, Jutta
Jung, Anne
Pauly, Christoph
Derr, Ralf
Gruenewald, Patrick
Laub, Marc
Klaus, Manuela
Genzel, Christoph
Motz, Christian
Mücklich, Frank
Schaefer, Florian
author_facet Luksch, Jutta
Jung, Anne
Pauly, Christoph
Derr, Ralf
Gruenewald, Patrick
Laub, Marc
Klaus, Manuela
Genzel, Christoph
Motz, Christian
Mücklich, Frank
Schaefer, Florian
author_sort Luksch, Jutta
collection PubMed
description Nickel(Ni)/aluminium(Al) hybrid foams are Al base foams coated with Ni by electrodeposition. Hybrid foams offer an enhanced energy absorption capacity. To ensure a good adhering Ni coating, necessary for a shear resistant interface, the influence of a chemical pre-treatment of the base foam was investigated by a combination of an interface morphology analysis by focused ion beam (FIB) tomography and in situ mechanical testing. The critical energy for interfacial decohesion from these microbending fracture tests in the scanning electron microscope (SEM) were contrasted to and the results validated by depth-resolved measurements of the evolving stresses in the Ni coating during three-point bending tests at the energy-dispersive diffraction (EDDI) beamline at the synchrotron BESSY II. Such a multi-method assessment of the interface decohesion resistance with respect to the interface morphology provides a reliable investigation strategy for further improvement of the interface morphology.
format Online
Article
Text
id pubmed-8269473
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82694732021-07-10 Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis Luksch, Jutta Jung, Anne Pauly, Christoph Derr, Ralf Gruenewald, Patrick Laub, Marc Klaus, Manuela Genzel, Christoph Motz, Christian Mücklich, Frank Schaefer, Florian Materials (Basel) Article Nickel(Ni)/aluminium(Al) hybrid foams are Al base foams coated with Ni by electrodeposition. Hybrid foams offer an enhanced energy absorption capacity. To ensure a good adhering Ni coating, necessary for a shear resistant interface, the influence of a chemical pre-treatment of the base foam was investigated by a combination of an interface morphology analysis by focused ion beam (FIB) tomography and in situ mechanical testing. The critical energy for interfacial decohesion from these microbending fracture tests in the scanning electron microscope (SEM) were contrasted to and the results validated by depth-resolved measurements of the evolving stresses in the Ni coating during three-point bending tests at the energy-dispersive diffraction (EDDI) beamline at the synchrotron BESSY II. Such a multi-method assessment of the interface decohesion resistance with respect to the interface morphology provides a reliable investigation strategy for further improvement of the interface morphology. MDPI 2021-06-22 /pmc/articles/PMC8269473/ /pubmed/34206514 http://dx.doi.org/10.3390/ma14133473 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Luksch, Jutta
Jung, Anne
Pauly, Christoph
Derr, Ralf
Gruenewald, Patrick
Laub, Marc
Klaus, Manuela
Genzel, Christoph
Motz, Christian
Mücklich, Frank
Schaefer, Florian
Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis
title Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis
title_full Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis
title_fullStr Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis
title_full_unstemmed Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis
title_short Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis
title_sort ni/al-hybrid cellular foams: an interface study by combination of 3d-phase morphology imaging, microbeam fracture mechanics and in situ synchrotron stress analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269473/
https://www.ncbi.nlm.nih.gov/pubmed/34206514
http://dx.doi.org/10.3390/ma14133473
work_keys_str_mv AT lukschjutta nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT junganne nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT paulychristoph nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT derrralf nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT gruenewaldpatrick nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT laubmarc nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT klausmanuela nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT genzelchristoph nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT motzchristian nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT mucklichfrank nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis
AT schaeferflorian nialhybridcellularfoamsaninterfacestudybycombinationof3dphasemorphologyimagingmicrobeamfracturemechanicsandinsitusynchrotronstressanalysis