Cargando…
Single-Station Coda Wave Interferometry: A Feasibility Study Using Machine Learning
Coda wave interferometry usually is applied with pairs of stations analyzing the signal transmitted from one station to another. A feasibility study was performed to evaluate if one single station could be used. In this case, the reflected coda wave signal from a zone to be identified was analyzed....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269479/ https://www.ncbi.nlm.nih.gov/pubmed/34206253 http://dx.doi.org/10.3390/ma14133451 |
_version_ | 1783720589286965248 |
---|---|
author | Saenger, Erik H. Finger, Claudia Karimpouli, Sadegh Tahmasebi, Pejman |
author_facet | Saenger, Erik H. Finger, Claudia Karimpouli, Sadegh Tahmasebi, Pejman |
author_sort | Saenger, Erik H. |
collection | PubMed |
description | Coda wave interferometry usually is applied with pairs of stations analyzing the signal transmitted from one station to another. A feasibility study was performed to evaluate if one single station could be used. In this case, the reflected coda wave signal from a zone to be identified was analyzed. Finite-difference simulations of wave propagation were used to study whether ultrasonic measurements could be used to detect velocity changes in such a zone up to a depth of 1.6 m in a highly scattering medium. For this aim, 1D convolutional neural networks were used for prediction. The crack density, the crack length, and the intrinsic attenuation were varied in the considered background material. The influence of noise and the sensor width was elaborated as well. It was shown that, in general, the suggested single-station approach is a possible way to identify damage zones, and the method was robust against the studied variations. The suggested workflow also took advantage of machine-learning techniques, and can be transferred to the detection of defects in concrete structures. |
format | Online Article Text |
id | pubmed-8269479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82694792021-07-10 Single-Station Coda Wave Interferometry: A Feasibility Study Using Machine Learning Saenger, Erik H. Finger, Claudia Karimpouli, Sadegh Tahmasebi, Pejman Materials (Basel) Article Coda wave interferometry usually is applied with pairs of stations analyzing the signal transmitted from one station to another. A feasibility study was performed to evaluate if one single station could be used. In this case, the reflected coda wave signal from a zone to be identified was analyzed. Finite-difference simulations of wave propagation were used to study whether ultrasonic measurements could be used to detect velocity changes in such a zone up to a depth of 1.6 m in a highly scattering medium. For this aim, 1D convolutional neural networks were used for prediction. The crack density, the crack length, and the intrinsic attenuation were varied in the considered background material. The influence of noise and the sensor width was elaborated as well. It was shown that, in general, the suggested single-station approach is a possible way to identify damage zones, and the method was robust against the studied variations. The suggested workflow also took advantage of machine-learning techniques, and can be transferred to the detection of defects in concrete structures. MDPI 2021-06-22 /pmc/articles/PMC8269479/ /pubmed/34206253 http://dx.doi.org/10.3390/ma14133451 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Saenger, Erik H. Finger, Claudia Karimpouli, Sadegh Tahmasebi, Pejman Single-Station Coda Wave Interferometry: A Feasibility Study Using Machine Learning |
title | Single-Station Coda Wave Interferometry: A Feasibility Study Using Machine Learning |
title_full | Single-Station Coda Wave Interferometry: A Feasibility Study Using Machine Learning |
title_fullStr | Single-Station Coda Wave Interferometry: A Feasibility Study Using Machine Learning |
title_full_unstemmed | Single-Station Coda Wave Interferometry: A Feasibility Study Using Machine Learning |
title_short | Single-Station Coda Wave Interferometry: A Feasibility Study Using Machine Learning |
title_sort | single-station coda wave interferometry: a feasibility study using machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269479/ https://www.ncbi.nlm.nih.gov/pubmed/34206253 http://dx.doi.org/10.3390/ma14133451 |
work_keys_str_mv | AT saengererikh singlestationcodawaveinterferometryafeasibilitystudyusingmachinelearning AT fingerclaudia singlestationcodawaveinterferometryafeasibilitystudyusingmachinelearning AT karimpoulisadegh singlestationcodawaveinterferometryafeasibilitystudyusingmachinelearning AT tahmasebipejman singlestationcodawaveinterferometryafeasibilitystudyusingmachinelearning |