Cargando…

A Study of the Flexural Behavior of Fiber-Reinforced Concretes Exposed to Moderate Temperatures

The use of synthetic fibers in fiber-reinforced concretes (FRCs) is often avoided due to the mistrust of lower performance at changing temperatures. This work examines the effect of moderate temperatures on the flexural strengths of FRCs. Two types of polypropylene fibers were tested, and one steel...

Descripción completa

Detalles Bibliográficos
Autores principales: Caballero-Jorna, Marta, Roig-Flores, Marta, Serna, Pedro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269587/
https://www.ncbi.nlm.nih.gov/pubmed/34202645
http://dx.doi.org/10.3390/ma14133522
Descripción
Sumario:The use of synthetic fibers in fiber-reinforced concretes (FRCs) is often avoided due to the mistrust of lower performance at changing temperatures. This work examines the effect of moderate temperatures on the flexural strengths of FRCs. Two types of polypropylene fibers were tested, and one steel fiber was employed as a reference. Three-point bending tests were carried out following an adapted methodology based on the standard EN 14651. This adapted procedure included an insulation system that allowed the assessment of FRC flexural behavior after being exposed for two months at temperatures of 5, 20, 35 and 50 °C. In addition, the interaction of temperature with a pre-cracked state was also analyzed. To do this, several specimens were pre-cracked to 0.5 mm after 28 days and conditioned in their respective temperature until testing. The findings suggest that this range of moderate temperatures did not degrade the behavior of FRCs to a great extent since the analysis of variances showed that temperature is not always a significant factor; however, it did have an influence on the pre-cracked specimens at 35 and 50 °C.