Cargando…

Effect of Aging Treatment on the Corrosion Resistance Properties of 7N01 Extrusion Aluminum Alloy

The influences of non-isothermal aging (the temperature range is 150–180 °C, and the heating rate is 5 and 20 °C/h alternately), single-peak aging (aging at 120 °C for 24 h, then water quenched was followed at room temperature), and two-stage aging (aging at 105 °C for 8 h first, then increasing agi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yitai, Qin, Weiou, Yu, Shuyuan, La, Jun, Fu, Yaokun, Li, Jidong, Yang, Wenchao, Zhan, Yongzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269724/
https://www.ncbi.nlm.nih.gov/pubmed/34203401
http://dx.doi.org/10.3390/ma14133615
Descripción
Sumario:The influences of non-isothermal aging (the temperature range is 150–180 °C, and the heating rate is 5 and 20 °C/h alternately), single-peak aging (aging at 120 °C for 24 h, then water quenched was followed at room temperature), and two-stage aging (aging at 105 °C for 8 h first, then increasing aging temperature to 135 °C and keeping for 12 h, followed by water quenching at room temperature) on the corrosion resistance and microstructure of the 7N01 aluminum alloy under 3.5 wt.% NaCl were investigated using electric polarization curve test and exfoliation corrosion. After aging, the hardness of samples was measured by a Vickers micro-hardness tester, and the electrical conductivities were obtained using the eddy current method. The results show that the steady phase η and metastable phase η′ are precipitated in the grain boundary of 7N01 aluminum alloy after non-isothermal aging, and their distribution is discontinuous. The hardness of the alloy can reach 136.9 HV1 and the electrical conductivity can reach 35.8% IACS, which is close to the hardness of single-peak aging and the conductivity of two-stage aging, respectively. Compared with single-peak aging, the corrosion current density of non-isothermal aging is reduced by 15.5%, and that of two-stage aging is reduced by 28.9%.