Cargando…

On Developing a Hydrophobic Rubberized Cement Paste

It is well known that most cement matrix materials are hydrophilic. For structural materials, hydrophilicity is harmful because the absorption of water will induce serious damage to these materials. In this study, crumb rubber was pretreated by partial oxidation and used as an additive to develop a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chi-Yao, Shen, Zih-Yao, Lee, Maw-Tien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269869/
https://www.ncbi.nlm.nih.gov/pubmed/34279255
http://dx.doi.org/10.3390/ma14133687
Descripción
Sumario:It is well known that most cement matrix materials are hydrophilic. For structural materials, hydrophilicity is harmful because the absorption of water will induce serious damage to these materials. In this study, crumb rubber was pretreated by partial oxidation and used as an additive to develop a hydrophobic rubberized cement paste. The pretreated crumb rubber was investigated using Fourier-transform infrared spectrometry (FT-IR) to understand the function groups on its surface. The pyrolysis oil adsorbed on the surface of the crumb rubber was observed by FT-IR and nuclear magnetic resonance (NMR) spectroscopy. A colloid probe with calcium silicate hydrate (C–S–H) at the apex was prepared to measure the intermolecular interaction forces between the crumb rubber and the C-S-H using an atomic force microscope (AFM). Pure cement paste, cement paste with the as-received crumb rubber, and cement paste with pretreated crumb rubber were prepared for comparison. FT-IR, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to understand the microstructure of the pastes. The static contact angle was used as the index of the hydrophobicity of the pastes. Experimental results showed that the hardened cement paste containing partially oxidized crumb rubber had excellent hydrophobic properties with an insignificant reduction in the compressive strength.