Cargando…
Wire Arc Additive Manufacturing of Al-Mg Alloy with the Addition of Scandium and Zirconium
The proposed paper considers the opportunity of expanding the application area of wire arc additive manufacturing (WAAM) method by means of increasing the strength properties of deposited material, due to the implementation of aluminum wire with the addition of scandium and zirconium. For the experi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269911/ https://www.ncbi.nlm.nih.gov/pubmed/34209214 http://dx.doi.org/10.3390/ma14133665 |
Sumario: | The proposed paper considers the opportunity of expanding the application area of wire arc additive manufacturing (WAAM) method by means of increasing the strength properties of deposited material, due to the implementation of aluminum wire with the addition of scandium and zirconium. For the experimental research, the welding wire 1575 of the Al-Mg-Sc-Zr system containing 0.23% Sc and 0.19% Zr was selected. The optimal welding parameters, ensuring the defect-free formation of deposited material with low heat input, were used. Porosity level was estimated. The thermal state was estimated by finite element simulation. Simulated thermal state was verified by comparison with thermocouples data. Post-heat treatment parameters that lead to maximum strength with good plasticity were determined. The maximum yield strength (YS) of 268 MPa and ultimate strength (UTS) of 403 MPa were obtained, while the plasticity was determined at least 16.0% in all WAAM specimens. |
---|