Cargando…
Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units
PURPOSE: To describe an implementation of dual-energy computed tomography (DECT) for calculation of proton stopping-power ratios (SPRs) in a commercial treatment-planning system. The process for validation and the workflow for safe deployment of DECT is described, using single-energy computed tomogr...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Particle Therapy Co-operative Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270086/ https://www.ncbi.nlm.nih.gov/pubmed/34285936 http://dx.doi.org/10.14338/IJPT-20-00075.1 |
_version_ | 1783720726323265536 |
---|---|
author | Kassaee, Anthony Cheng, Chingyun Yin, Lingshu Zou, Wei Li, Taoran Lin, Alexander Swisher-McClure, Samuel Lukens, John N. Lustig, Robert A. O'Reilly, Shannon Dong, Lei MS, Roni Hytonen Teo, Boon-Keng Kevin |
author_facet | Kassaee, Anthony Cheng, Chingyun Yin, Lingshu Zou, Wei Li, Taoran Lin, Alexander Swisher-McClure, Samuel Lukens, John N. Lustig, Robert A. O'Reilly, Shannon Dong, Lei MS, Roni Hytonen Teo, Boon-Keng Kevin |
author_sort | Kassaee, Anthony |
collection | PubMed |
description | PURPOSE: To describe an implementation of dual-energy computed tomography (DECT) for calculation of proton stopping-power ratios (SPRs) in a commercial treatment-planning system. The process for validation and the workflow for safe deployment of DECT is described, using single-energy computed tomography (SECT) as a safety check for DECT dose calculation. MATERIALS AND METHODS: The DECT images were acquired at 80 kVp and 140 kVp and were processed with computed tomography scanner software to derive the electron density and effective atomic number images. Reference SPRs of tissue-equivalent plugs from Gammex (Middleton, Wisconsin) and CIRS (Computerized Imaging Reference Systems, Norfolk, Virginia) electron density phantoms were used for validation and comparison of SECT versus DECT calculated through the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, California) application programming interface scripting tool. An in-house software was also used to create DECT SPR computed tomography images for comparison with the script output. In the workflow, using the Eclipse system application programming interface script, clinical plans were optimized with the SECT image set and then forward-calculated with the DECT SPR for the final dose distribution. In a second workflow, the plans were optimized using DECT SPR with reduced range-uncertainty margins. RESULTS: For the Gammex phantom, the root mean square error in SPR was 1.08% for DECT versus 2.29% for SECT for 10 tissue-surrogates, excluding the lung. For the CIRS Phantom, the corresponding results were 0.74% and 2.27%. When evaluating the head and neck plan, DECT optimization with 2% range-uncertainty margins achieved a small reduction in organ-at-risk doses compared with that of SECT plans with 3.5% range-uncertainty margins. For the liver case, DECT was used to identify and correct the lipiodol SPR in the SECT plan. CONCLUSION: It is feasible to use DECT for proton-dose calculation in a commercial treatment planning system in a safe manner. The range margins can be reduced to 2% in some sites, including the head and neck. |
format | Online Article Text |
id | pubmed-8270086 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Particle Therapy Co-operative Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-82700862021-07-19 Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units Kassaee, Anthony Cheng, Chingyun Yin, Lingshu Zou, Wei Li, Taoran Lin, Alexander Swisher-McClure, Samuel Lukens, John N. Lustig, Robert A. O'Reilly, Shannon Dong, Lei MS, Roni Hytonen Teo, Boon-Keng Kevin Int J Part Ther Physics PURPOSE: To describe an implementation of dual-energy computed tomography (DECT) for calculation of proton stopping-power ratios (SPRs) in a commercial treatment-planning system. The process for validation and the workflow for safe deployment of DECT is described, using single-energy computed tomography (SECT) as a safety check for DECT dose calculation. MATERIALS AND METHODS: The DECT images were acquired at 80 kVp and 140 kVp and were processed with computed tomography scanner software to derive the electron density and effective atomic number images. Reference SPRs of tissue-equivalent plugs from Gammex (Middleton, Wisconsin) and CIRS (Computerized Imaging Reference Systems, Norfolk, Virginia) electron density phantoms were used for validation and comparison of SECT versus DECT calculated through the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, California) application programming interface scripting tool. An in-house software was also used to create DECT SPR computed tomography images for comparison with the script output. In the workflow, using the Eclipse system application programming interface script, clinical plans were optimized with the SECT image set and then forward-calculated with the DECT SPR for the final dose distribution. In a second workflow, the plans were optimized using DECT SPR with reduced range-uncertainty margins. RESULTS: For the Gammex phantom, the root mean square error in SPR was 1.08% for DECT versus 2.29% for SECT for 10 tissue-surrogates, excluding the lung. For the CIRS Phantom, the corresponding results were 0.74% and 2.27%. When evaluating the head and neck plan, DECT optimization with 2% range-uncertainty margins achieved a small reduction in organ-at-risk doses compared with that of SECT plans with 3.5% range-uncertainty margins. For the liver case, DECT was used to identify and correct the lipiodol SPR in the SECT plan. CONCLUSION: It is feasible to use DECT for proton-dose calculation in a commercial treatment planning system in a safe manner. The range margins can be reduced to 2% in some sites, including the head and neck. The Particle Therapy Co-operative Group 2021-06-25 /pmc/articles/PMC8270086/ /pubmed/34285936 http://dx.doi.org/10.14338/IJPT-20-00075.1 Text en ©Copyright 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/Distributed under Creative Commons CC-BY (https://creativecommons.org/licenses/by/4.0/) |
spellingShingle | Physics Kassaee, Anthony Cheng, Chingyun Yin, Lingshu Zou, Wei Li, Taoran Lin, Alexander Swisher-McClure, Samuel Lukens, John N. Lustig, Robert A. O'Reilly, Shannon Dong, Lei MS, Roni Hytonen Teo, Boon-Keng Kevin Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units |
title | Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units |
title_full | Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units |
title_fullStr | Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units |
title_full_unstemmed | Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units |
title_short | Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units |
title_sort | dual-energy computed tomography proton-dose calculation with scripting and modified hounsfield units |
topic | Physics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270086/ https://www.ncbi.nlm.nih.gov/pubmed/34285936 http://dx.doi.org/10.14338/IJPT-20-00075.1 |
work_keys_str_mv | AT kassaeeanthony dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT chengchingyun dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT yinlingshu dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT zouwei dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT litaoran dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT linalexander dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT swishermccluresamuel dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT lukensjohnn dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT lustigroberta dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT oreillyshannon dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT donglei dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT msronihytonen dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits AT teoboonkengkevin dualenergycomputedtomographyprotondosecalculationwithscriptingandmodifiedhounsfieldunits |