Cargando…
Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques
Boosting techniques from the field of statistical learning have grown to be a popular tool for estimating and selecting predictor effects in various regression models and can roughly be separated in two general approaches, namely gradient boosting and likelihood-based boosting. An extensive framewor...
Autores principales: | Griesbach, Colin, Groll, Andreas, Bergherr, Elisabeth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270154/ https://www.ncbi.nlm.nih.gov/pubmed/34242316 http://dx.doi.org/10.1371/journal.pone.0254178 |
Ejemplares similares
-
Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques
por: Griesbach, Colin, et al.
Publicado: (2021) -
Restricted maximum likelihood estimation of covariances in sparse linear models
por: Neumaier, Arnold, et al.
Publicado: (1998) -
Estimating variances and covariances for multivariate animal models by restricted maximum likelihood
por: Meyer, K
Publicado: (1991) -
Performance of penalized maximum likelihood in estimation of genetic covariances matrices
por: Meyer, Karin
Publicado: (2011) -
A likelihood-based approach to mixed modeling with ambiguity in cluster identifiers
por: Foulkes, Andrea S., et al.
Publicado: (2008)