Cargando…
Exploration of physiological sensors, features, and machine learning models for pain intensity estimation
In current clinical settings, typically pain is measured by a patient’s self-reported information. This subjective pain assessment results in suboptimal treatment plans, over-prescription of opioids, and drug-seeking behavior among patients. In the present study, we explored automatic objective pain...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270203/ https://www.ncbi.nlm.nih.gov/pubmed/34242325 http://dx.doi.org/10.1371/journal.pone.0254108 |
_version_ | 1783720754169249792 |
---|---|
author | Pouromran, Fatemeh Radhakrishnan, Srinivasan Kamarthi, Sagar |
author_facet | Pouromran, Fatemeh Radhakrishnan, Srinivasan Kamarthi, Sagar |
author_sort | Pouromran, Fatemeh |
collection | PubMed |
description | In current clinical settings, typically pain is measured by a patient’s self-reported information. This subjective pain assessment results in suboptimal treatment plans, over-prescription of opioids, and drug-seeking behavior among patients. In the present study, we explored automatic objective pain intensity estimation machine learning models using inputs from physiological sensors. This study uses BioVid Heat Pain Dataset. We extracted features from Electrodermal Activity (EDA), Electrocardiogram (ECG), Electromyogram (EMG) signals collected from study participants subjected to heat pain. We built different machine learning models, including Linear Regression, Support Vector Regression (SVR), Neural Networks and Extreme Gradient Boosting for continuous value pain intensity estimation. Then we identified the physiological sensor, feature set and machine learning model that give the best predictive performance. We found that EDA is the most information-rich sensor for continuous pain intensity prediction. A set of only 3 features from EDA signals using SVR model gave an average performance of 0.93 mean absolute error (MAE) and 1.16 root means square error (RMSE) for the subject-independent model and of 0.92 MAE and 1.13 RMSE for subject-dependent. The MAE achieved with signal-feature-model combination is less than 1 unit on 0 to 4 continues pain scale, which is smaller than the MAE achieved by the methods reported in the literature. These results demonstrate that it is possible to estimate pain intensity of a patient using a computationally inexpensive machine learning model with 3 statistical features from EDA signal which can be collected from a wrist biosensor. This method paves a way to developing a wearable pain measurement device. |
format | Online Article Text |
id | pubmed-8270203 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-82702032021-07-21 Exploration of physiological sensors, features, and machine learning models for pain intensity estimation Pouromran, Fatemeh Radhakrishnan, Srinivasan Kamarthi, Sagar PLoS One Research Article In current clinical settings, typically pain is measured by a patient’s self-reported information. This subjective pain assessment results in suboptimal treatment plans, over-prescription of opioids, and drug-seeking behavior among patients. In the present study, we explored automatic objective pain intensity estimation machine learning models using inputs from physiological sensors. This study uses BioVid Heat Pain Dataset. We extracted features from Electrodermal Activity (EDA), Electrocardiogram (ECG), Electromyogram (EMG) signals collected from study participants subjected to heat pain. We built different machine learning models, including Linear Regression, Support Vector Regression (SVR), Neural Networks and Extreme Gradient Boosting for continuous value pain intensity estimation. Then we identified the physiological sensor, feature set and machine learning model that give the best predictive performance. We found that EDA is the most information-rich sensor for continuous pain intensity prediction. A set of only 3 features from EDA signals using SVR model gave an average performance of 0.93 mean absolute error (MAE) and 1.16 root means square error (RMSE) for the subject-independent model and of 0.92 MAE and 1.13 RMSE for subject-dependent. The MAE achieved with signal-feature-model combination is less than 1 unit on 0 to 4 continues pain scale, which is smaller than the MAE achieved by the methods reported in the literature. These results demonstrate that it is possible to estimate pain intensity of a patient using a computationally inexpensive machine learning model with 3 statistical features from EDA signal which can be collected from a wrist biosensor. This method paves a way to developing a wearable pain measurement device. Public Library of Science 2021-07-09 /pmc/articles/PMC8270203/ /pubmed/34242325 http://dx.doi.org/10.1371/journal.pone.0254108 Text en © 2021 Pouromran et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Pouromran, Fatemeh Radhakrishnan, Srinivasan Kamarthi, Sagar Exploration of physiological sensors, features, and machine learning models for pain intensity estimation |
title | Exploration of physiological sensors, features, and machine learning models for pain intensity estimation |
title_full | Exploration of physiological sensors, features, and machine learning models for pain intensity estimation |
title_fullStr | Exploration of physiological sensors, features, and machine learning models for pain intensity estimation |
title_full_unstemmed | Exploration of physiological sensors, features, and machine learning models for pain intensity estimation |
title_short | Exploration of physiological sensors, features, and machine learning models for pain intensity estimation |
title_sort | exploration of physiological sensors, features, and machine learning models for pain intensity estimation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270203/ https://www.ncbi.nlm.nih.gov/pubmed/34242325 http://dx.doi.org/10.1371/journal.pone.0254108 |
work_keys_str_mv | AT pouromranfatemeh explorationofphysiologicalsensorsfeaturesandmachinelearningmodelsforpainintensityestimation AT radhakrishnansrinivasan explorationofphysiologicalsensorsfeaturesandmachinelearningmodelsforpainintensityestimation AT kamarthisagar explorationofphysiologicalsensorsfeaturesandmachinelearningmodelsforpainintensityestimation |