Cargando…
Exploration of physiological sensors, features, and machine learning models for pain intensity estimation
In current clinical settings, typically pain is measured by a patient’s self-reported information. This subjective pain assessment results in suboptimal treatment plans, over-prescription of opioids, and drug-seeking behavior among patients. In the present study, we explored automatic objective pain...
Autores principales: | Pouromran, Fatemeh, Radhakrishnan, Srinivasan, Kamarthi, Sagar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270203/ https://www.ncbi.nlm.nih.gov/pubmed/34242325 http://dx.doi.org/10.1371/journal.pone.0254108 |
Ejemplares similares
-
Personalized Deep Bi-LSTM RNN Based Model for Pain Intensity Classification Using EDA Signal
por: Pouromran, Fatemeh, et al.
Publicado: (2022) -
Analysis of pain research literature through keyword Co-occurrence networks
por: Ozek, Burcu, et al.
Publicado: (2023) -
Complexity and entropy representation for machine component diagnostics
por: Radhakrishnan, Srinivasan, et al.
Publicado: (2019) -
Resiliency of Mutualistic Supplier-Manufacturer Networks
por: Xu, Mengkai, et al.
Publicado: (2019) -
Correction: Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature
por: Radhakrishnan, Srinivasan, et al.
Publicado: (2017)