Cargando…
Predictions from algorithmic modeling result in better decisions than from data modeling for soybean iron deficiency chlorosis
In soybean variety development and genetic improvement projects, iron deficiency chlorosis (IDC) is visually assessed as an ordinal response variable. Linear Mixed Models for Genomic Prediction (GP) have been developed, compared, and used to select continuous plant traits such as yield, height, and...
Autores principales: | Xu, Zhanyou, Kurek, Andreomar, Cannon, Steven B., Beavis, William D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270216/ https://www.ncbi.nlm.nih.gov/pubmed/34242220 http://dx.doi.org/10.1371/journal.pone.0240948 |
Ejemplares similares
-
Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines
por: O'Rourke, Jamie A, et al.
Publicado: (2007) -
Soybean iron deficiency chlorosis high throughput phenotyping using an unmanned aircraft system
por: Dobbels, Austin A., et al.
Publicado: (2019) -
Deconstructing the genetic architecture of iron deficiency chlorosis in soybean using genome-wide approaches
por: Assefa, Teshale, et al.
Publicado: (2020) -
Field-Based Scoring of Soybean Iron Deficiency Chlorosis Using RGB Imaging and Statistical Learning
por: Bai, Geng, et al.
Publicado: (2018) -
Correction to: Soybean iron deficiency chlorosis high throughput phenotyping using an unmanned aircraft system
por: Dobbels, Austin A., et al.
Publicado: (2019)